Food Science and Biotechnology

, Volume 23, Issue 6, pp 1951–1957 | Cite as

The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from kimchi

  • Sun-Young Park
  • Ji-Won Lee
  • Sang-Dong Lim
Research Article


In order to identify strains with a high GABA production ability and glutamate decarboxylase activity, 273 bacteria were isolated from kimchi. K154 produced 154.86 μg/mL of GABA in an MRS broth containing 1% MSG, 170.42 μg/mL of GABA in an MRS broth containing 2% MSG, and 201.78 μg/mL of GABA in an MRS broth containing 3% MSG. K154 was identified as Lactobacillus plantarum based on API carbohydrate fermentation pattern testing. The 16s rDNA sequence was investigated in order to determine physiological characteristics. The optimum growth temperature of K154 was 37°C. K154 was more sensitive to novobiocin and bacitracin than to other antibiotics, and exhibited greater resistance to polymyxin B and vancomycin. K154 was comparatively tolerant to bile juice and acid, and displayed resistance to Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus at rates of 19.0, 18.9, and 13.6% respectively.


Lactobacillus plantarum physiological characteristic γ-aminobutyric acid functional product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Codex Alimentarius. Codex standard for kimchi (CODEX XTAN 223-2001). In: FAO/WHO Joint Publications: Processed and Quick Frozen Fruits & Vegetables. 5A. FAO, Rome, Italy (2001)Google Scholar
  2. 2.
    Cheigh HS, Park KY. Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. 34: 175–203 (1994)CrossRefGoogle Scholar
  3. 3.
    Park KY, Baek KA, Rhee SH, Cheigh HS. Antimutagenic effect of kimchi. Food Biotechnol. 4: 5–141 (1995)Google Scholar
  4. 4.
    Eom HJ, Seo DM, Han NS. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 117: 61–67 (2007)CrossRefGoogle Scholar
  5. 5.
    Koo OK, Jeong DW, Lee JM, Kim MJ, Lee JH, Chang HC, Kim JH, Lee HJ. Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Leuconostoc mesenteroides isolated from kimchi. Biotechnol. Lett. 27: 505–510 (2005)CrossRefGoogle Scholar
  6. 6.
    Higuchi T, Hayashi H, Abe K. Exchange of glutamate and γ-aminobutyrate in a Lactobacillus strains. J. Bacteriol. 179: 3362–3364 (1997)Google Scholar
  7. 7.
    Ueno H. Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B-Enzym. 10: 67–79 (2000)CrossRefGoogle Scholar
  8. 8.
    Manyam BV, Katz L, Hare TA, Kaniefski K, Tremblay RD. Isoniazid induced elevation of cerebrospinal fluid (CSF) GABA levels and effects on chorea in huntington’s disease. Ann. Neurol. 10: 7–35 (1981)CrossRefGoogle Scholar
  9. 9.
    Cho YR, Chang JY, Chang HC. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17: 104–109 (2007)Google Scholar
  10. 10.
    Jakobs C. Jaeken J. Gibson KM. Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16: 704–715 (1993)CrossRefGoogle Scholar
  11. 11.
    Vaiva G, Thomas P, Ducrocq F, Fontaine M, Boss V, Devos P, Rascle C, Cottencin O, Brunet A, Laffargue P, Coudemand M. Low posttrauma GABA plasma levels as a predictive factor in the development of acute post-traumatic stress disorder. Biol. Pstchiat. 55: 250–254 (2004)CrossRefGoogle Scholar
  12. 12.
    Simpson SM, Hickey AJ, Baker CB, Reynolds JN, Beninger RJ. The antidepressant phenelzine enhances memory in the double Ymaze and increases GABA levels in the hippocampus and frontal cortex of rats. Pharmacol. Biochem. Behav. 102: 109–117 (2012)CrossRefGoogle Scholar
  13. 13.
    Lim SD, Kim KS, Do JR. Physiological characteristics and production of vitamin K2 by Lactobacillus fermentum LC272 isolated from raw milk. Korean J. Food Sci. Anim. Resour. 31: 513–520 (2011)CrossRefGoogle Scholar
  14. 14.
    Zhang G, Bown AW. The rapid determination of gamma aminobutyric acid. Phytochemistry 44: 1007–1009 (1997)CrossRefGoogle Scholar
  15. 15.
    Buchanan RE, Gibbons NE. Bergey’s Manual of Determinative Bacteriology. 8th ed. Waverly Press, Inc., Baltimore, MD, USA. pp. 576–593 (1974)Google Scholar
  16. 16.
    Park SJ, Yoon JC, Shin KS, Kim EH, Yim S, Cho YJ, Sung GM, Lee DG, Kim SB, Lee DU, Woo SH, Koopman B. Dominance of endospore-forming bacteria on a rotating activated Bacillus contactor biofilm for advanced wastewater treatment. J. Microbiol. 45: 113–121 (2007)Google Scholar
  17. 17.
    Gilliland SE, Walker DK. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73: 905–911 (1990)CrossRefGoogle Scholar
  18. 18.
    Clark PA, Cotton LN, Martin JH. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-Tolerance to simulated pH of human stomachs. Cul. Dairy Prod. J. 28: 11–14 (1993)Google Scholar
  19. 19.
    Gilliland SE, Speck ML. Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40: 820–823 (1977)Google Scholar
  20. 20.
    Lim SD, Kim KS, Do JR. Physiological characteristics and GABA production of Lactobacillus acidophilus RMK567 isolated from raw milk. Korean J. Food Sci. Anim. Resour. 29:15–23 (2009)CrossRefGoogle Scholar
  21. 21.
    Tung YT, Lee BH, Liu CF, Pan TM. Optimization of culture condition for ACEI and GABA production by lactic acid bacteria. J. Food Sci. 76: M585–M591 (2011)CrossRefGoogle Scholar
  22. 22.
    Hold GL, Pryde SE, Russell VJ, Furrie E, Flint HJ. Assessment of microbial diversity in human colonic samles by 16S rDNA sequence analysis. FEMS Microbiol. Eco. 39: 33–39 (2002)CrossRefGoogle Scholar
  23. 23.
    Charteris WP, Kelly PM, Morelli L, Collins JK. Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli. J. Food Prot. 64: 2007–2014 (2001)Google Scholar
  24. 24.
    Moon BY, Lee SK, Park JH. Antibiotic resistant characteristics or bifidobacterium from Korean intestine origin and commercial yoghurts. Korean J. Food Sci. Indus. 40: 41–46 (2006)Google Scholar
  25. 25.
    Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteriaa review. Int. J. Food Microbiol. 105: 281–295 (2005)CrossRefGoogle Scholar
  26. 26.
    Kim SH, Shin BH, Kim YH, Nam SW, Jeon SJ. Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnol. Bioproc. E. 12: 707–712 (2007)CrossRefGoogle Scholar
  27. 27.
    Beaud D, Tailliez P, Anba-Mondoloni J. Genetic characterization of the β-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Soc. General Microbiol. 151: 2323–2330 (2005)Google Scholar
  28. 28.
    Nguten TDT, Kang JH, Lee MS. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterollowering effects. Int. J. Food Microbiol. 113: 358–361 (2007)CrossRefGoogle Scholar
  29. 29.
    Sanni AI, Morion-Guyot J, Cuyot JP. New efficient amylaseproducing strains of Lactobacillus plantarum and L. Fermentum isolated from different Nigerian traditional fermented foods. Int. J. Food Micobiol. 72: 53–62 (2002)CrossRefGoogle Scholar
  30. 30.
    Succi M, Tremonte P, Reale A, Sorrentino E, Grazia L, Pacifico S. Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244: 129–137 (2005)CrossRefGoogle Scholar
  31. 31.
    Gilliland SE, Staley TE, Bush LJ. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67: 3045–3051 (1984)CrossRefGoogle Scholar
  32. 32.
    Lee SH, Yang EH, Kwon HS, Kang JH, Kang BH. Potential probiotic properties of Lactobacillus johnsonii IDCC 9203 isolated from infant feces. Korean J. Microbiol. Biotechnol. 36: 121–127 (2008)Google Scholar
  33. 33.
    Ouwehand AC, Salminen S, Isolauri E. Probiotics: An overview of beneficial effects. Anton. Van Leeuw. 82: 279–289 (2002)CrossRefGoogle Scholar
  34. 34.
    Erkkila S, Petaja E. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55: 279–300 (2000)CrossRefGoogle Scholar
  35. 35.
    Mcdonald LC, Fleming HP, Hassan HM. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbial. 53: 2124–2128 (1990)Google Scholar
  36. 36.
    Daeschel MA. Antimicrobial substances from lactic acid bacteria for use as preservatives. J. Food Technol. 43: 164–167 (1989)Google Scholar
  37. 37.
    Havinaar R, Brink BT, Veid JHJI. Selection of strains for probiotic use. In: Probiotics. Fuller R. (ed). Chapman & Hall, London, UK. pp. 209–224 (1992)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Korea Food Research InstituteSeongnam, GyeonggiKorea

Personalised recommendations