Food Science and Biotechnology

, Volume 23, Issue 5, pp 1587–1591 | Cite as

Anti-cariogenic effects of erythritol on growth and adhesion of Streptococcus mutans

  • Young-Nam Park
  • Seong-Soog Jeong
  • Jin Zeng
  • Sun-Hye Kim
  • Suk-Jin Hong
  • Seung-Ho Ohk
  • Choong-Ho Choi
Research Article

Abstract

Erythritol is one of the most widely used low calorie sugar substitutes and has known inhibitory effects on the growth of Streptococcus mutans. However, the mechanism underlying this inhibition is poorly understood. Expression profiles of the glucosyltransferase (GTF) and fructosyltransferase (FTF) genes in S. mutans were evaluated in the presence of erythritol and other sweeteners. Adhesion of S. mutans to different carbohydrates was also determined across a range of concentrations. Erythritol significantly (p<0.05) inhibited adherence of S. mutans under multiple conditions, compared with sucrose. Erythritol significantly (p<0.05) inhibited expressions of gtfB, gtfC, gtfD, and ftf in the presence of various carbohydrates compared with sucrose. These findings were consistent with an anti-cariogenic effect of erythritol on S. mutans, and suggested mechanisms by which erythritol inhibits formation of dental caries.

Keywords

erythritol Streptococcus mutans glucosyltransferase fructosyltransferase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rolla G, Scheie AA, Ciardi JE. Role of sucrose in plaque formation. Scan. J. Dent. Res. 93: 105–111 (1985)Google Scholar
  2. 2.
    Ellwein LB, Cohen SM. The health risks of saccharin revisited. Crit. Rev. Toxicol. 20: 311–326 (1990)CrossRefGoogle Scholar
  3. 3.
    Soderling EM. Xylitol, mutans streptococci, and dental plaque. Adv. Dent. Res. 21: 74–78 (2009)Google Scholar
  4. 4.
    Soderling EM, Ekman TC, Taipale TJ. Growth inhibition of Streptococcus mutans with low xylitol concentrations. Curr. Microbiol. 56: 382–385 (2008)CrossRefGoogle Scholar
  5. 5.
    Soderling EM, Hietala-Lenkkeri AM. Xylitol and erythritol decrease adherence of polysaccharide-producing oral streptococci. Curr. Microbiol. 60: 25–29 (2010)CrossRefGoogle Scholar
  6. 6.
    Rywiñska A, Tomaszewska L, Rymowicz W. Erythritol biosynthesis by Yarrowia lipolytica yeast under various culture conditions. Afr. J. Microbiol. Res. 7: 3511–3516 (2013)Google Scholar
  7. 7.
    Mattos-Graner RO, Smith DJ, King WF, Mayer MP. Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12- to 30-month-old children. J. Dent. Res. 79: 1371–1377 (2000)CrossRefGoogle Scholar
  8. 8.
    Shemesh M, Tam A, Feldman M, Steinberg D. Differential expression profiles of streptococcus mutans ftf, gtf, and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohyd. Res. 341: 2090–2097 (2006)CrossRefGoogle Scholar
  9. 9.
    Kuramitsu HK. Virulence factors of mutans streptococci: Role of molecular genetics. Crit. Rev. Oral Boil. 4: 159–176 (1993)Google Scholar
  10. 10.
    Makinen KK, Alanen P, Isokangas P, Isotupa K, Soderling E, Makinen PL, Wenhui, W, Weijian W, Xiaochi C, Yi W, Boxue Z. Thirty-nine-month xylitol chewing-gum programme in initially 8-year-old school children: A feasibility study focusing on mutans streptococci and lactobacilli. Int. Dent. J. 58: 41–50 (2008)Google Scholar
  11. 11.
    Soderling E, Makinen KK, Chen CY, Pape HR, Loesche W Jr, Makinen PL. Effect of sorbitol, xylitol, and xylitol/sorbitol chewing gums on dental plaque. Caries Res. 23: 378–384 (1989)CrossRefGoogle Scholar
  12. 12.
    Thaweboon S, Thaweboon B, Soo-Ampon S. The effect of xylitol chewing gum on mutans streptococci in saliva and dental plaque. Southeast Asian J. Trop. Med. Public Health. 35: 1024–1027 (2004)Google Scholar
  13. 13.
    Haresaku S, Hanioka T, Tsutsui A, Yamamoto M, Chou T, Gunjishima Y. Long-term effect of xylitol gum use on mutans streptococci in adults. Caries Res. 41: 198–203 (2007)CrossRefGoogle Scholar
  14. 14.
    Holgerson PL, Sjostrom I, Stecksen-Blicks C, Twetman S. Dental plaque formation and salivary mutans streptococci in schoolchildren after use of xylitol-containing chewing gum. Int. J. Paediatr. Dent. 17: 79–85 (2007)CrossRefGoogle Scholar
  15. 15.
    Assev S, Rolla G. Further studies on the growth inhibition of Streptococcus mutans omz 176 by xylitol. Acta Path. Micro. Im. B 94: 97–102 (1986)Google Scholar
  16. 16.
    Kawanabe J, Hirasawa M, Takeuchi T, Oda T, Ikeda T. Noncariogenicity of erythritol as a substrate. Caries Res. 26: 358–362 (1992)CrossRefGoogle Scholar
  17. 17.
    Zucca M, Cenna S, Berzioli S, Gariglio M, Fagnoni V. Streptococcus mutans and dental caries: Microbiological aspects. G. Batteriol. Virol. Immunol. 83: 108–117 (1990)Google Scholar
  18. 18.
    Hazlett KR, Michalek SM, Banas JA. Inactivation of the gbpA gene of Streptococcus mutans increases virulence and promotes in vivo accumulation of recombinations between the glucosyltransferase b and c genes. Infect. Immun. 66: 2180–2185 (1998)Google Scholar
  19. 19.
    Yamashita Y, Bowen WH, Burne RA, Kuramitsu HK. Role of the Streptococcus mutans gtf genes in caries induction in the specificpathogen-free rat model. Infect. Immun. 61: 3811–3817 (1993)Google Scholar
  20. 20.
    Tsumori H, Kuramitsu H. The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: Essential role of the gtfC enzyme. Oral Microbiol. Immunol. 12: 274–280 (1997)CrossRefGoogle Scholar
  21. 21.
    Shimamura A, Tsumori H, Mukasa H. Three kinds of extracellular glucosyltransferases from Streptococcus mutans 6715 (serotype g). FEBS Lett. 157: 79–84 (1983)CrossRefGoogle Scholar
  22. 22.
    Aoki H, Shiroza T, Hayakawa M, Sato S, Kuramitsu HK. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect. Immun. 53: 587–594 (1986)Google Scholar
  23. 23.
    Vacca-Smith AM, Bowen WH. Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. Arch. Oral Biol. 43: 103–110 (1998)CrossRefGoogle Scholar
  24. 24.
    Ooshima T, Matsumura M, Hoshino T, Kawabata S, Sobue S, Fujiwara T. Contributions of three glycosyltransferases to sucrosedependent adherence of Streptococcus mutans. J. Dent. Res. 80: 1672–1677 (2001)CrossRefGoogle Scholar
  25. 25.
    Hanada N, Kuramitsu HK. Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect. Immun. 56: 1999–2005 (1988)Google Scholar
  26. 26.
    Birkhed D, Bar A. Sorbitol and dental caries. World Rev. Nutr. Diet. 65: 1–37 (1991)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Young-Nam Park
    • 1
  • Seong-Soog Jeong
    • 2
  • Jin Zeng
    • 3
  • Sun-Hye Kim
    • 3
  • Suk-Jin Hong
    • 2
  • Seung-Ho Ohk
    • 3
  • Choong-Ho Choi
    • 2
  1. 1.Department of Dental HygieneGimcheon UniversityGimcheon, GyeongbukKorea
  2. 2.Department of Preventive and Public Health DentistryChonnam National UniversityGwangjuKorea
  3. 3.Department of Oral Microbiology, and 2nd Stage of Brain Korea 21 for School of DentistryChonnam National UniversityGwangjuKorea

Personalised recommendations