Food Science and Biotechnology

, Volume 23, Issue 3, pp 731–738 | Cite as

Optimization of high hydrostatic pressure process for the extraction of kirenol from Siegesbeckia orientalis L. using response surface methodology

  • Mi-Bo Kim
  • Ji-Eun Park
  • Seon Wook Woo
  • Sang-Bin Lim
  • Jae-Kwan HwangEmail author
Research Article


High hydrostatic pressure (HHP) extraction method was optimized to maximize the extraction yield of kirenol from Siegesbeckia orientalis. Operating parameters such as extraction pressure (100–600 MPa), pressure holding time (3–20 min), feed-to-solvent ratio (1:10–1:90 (w/v)), and solvent (ethanol) concentration (0–100%) were investigated individually by mono-factor experiments. Then, the optimal extraction conditions were determined using response surface methodology. Box-Behnken design was applied to evaluate the effects of three independent variables (extraction pressure, solvent concentration, and feed-to-solvent ratio) on the extraction yield of kirenol from S. orientalis. Extraction pressure, solvent concentration, and feed-to-solvent ratio affected the extraction yields significantly, whereas the pressure holding time had no significant effect. The optimal processing conditions, which gave a maximum extraction yield of 85.9% kirenol from the raw material, were as follows: extracting pressure 320 MPa, pressure holding time 5min, ethanol concentration 18%, and feed-to-solvent ratio 1:76 (w/v).


high hydrostatic pressure kirenol Siegesbeckia orientalis L. response surface methodology Box-Behnken design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang JP, Zhou YM, Ye YJ, Shang XM, Cai YL, Xiong CM, Wu YX, Xu HX. Topical anti-inflammatory and analgesic activity of kirenol isolated from Siegesbeckia orientalis. J. Ethnopharmacol. 137: 1089–1094 (2011)CrossRefGoogle Scholar
  2. 2.
    Qian RQ, Zhang CY, Fu HZ. Study on therapeutic mechanism of anti-rheumatism action of Herba siegesbeckiae. Chin. J. Integr. Trad. West. Med. 20: 192–195 (2000)Google Scholar
  3. 3.
    Xu YL, Xiong J, Jin QD, Wang SL. Research advancement of Siegesbeckia. Nat. Pro. Res. Dev. 13: 80–85 (2001)Google Scholar
  4. 4.
    Wang JP, Cai YL, Wu YX. Antiinflammatory and analgesic activity of topical administration of Siegesbeckia pubescens. Pak. J. Pharm. Sci. 21: 89–91 (2008)Google Scholar
  5. 5.
    Wang LL, Hu LH. Chemical constituents of Siegesbeckia orientalis L. J. Integr. Plant Biol. 48: 991–995 (2006)CrossRefGoogle Scholar
  6. 6.
    Xiang Y, Zhang H, Fan CQ, Yue JM. Novel diterpenoids and diterpenoid glycosides from Siegesbeckia orientalis. J. Nat. Prod. 67: 1517–1521 (2004)CrossRefGoogle Scholar
  7. 7.
    Wang JP, Zhou YM, Zhang YH. Kirenol production in hairy root culture of Siegesbeckea orientalis and its antimicrobial activity. Pharmacogn. Mag. 8: 149–155 (2012)CrossRefGoogle Scholar
  8. 8.
    Mun SY. Anti-photoaging effects of Siegesbeckia orientalis L. extract on UVB-induced skin damage in human skin fibroblasts and hairless mice. MS thesis, Yonsei University, Seoul, Korea (2012)Google Scholar
  9. 9.
    Zhang S, Chen R, Wang C. Experiment study on ultrahigh pressure extraction of ginsenosides. J. Food Eng. 79: 1–5 (2007)CrossRefGoogle Scholar
  10. 10.
    Prasad KN, Yang B, Zhao M, Wang BS, Chen F, Jiang Y. Effects of high-pressure treatment on the extraction yield, phenolic content and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit pericarp. Int. J. Food Sci. Technol. 44: 960–966 (2009)CrossRefGoogle Scholar
  11. 11.
    Prasad KN, Yang E, Yi C, Zhao M, Jiang Y. Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov. Food Sci. Emerg. 10: 155–159 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhang S, Zhu J, Wang C. Novel high pressure extraction technology. Int. J. Pharm. 78: 471–474 (2004)Google Scholar
  13. 13.
    Bi HM, Zhang SQ, Liu CJ, Wang CZ. High hydrostatic pressure extraction of salidroside from Rhodiola sachalinensis. J. Food Process Eng. 32: 53–63 (2009)CrossRefGoogle Scholar
  14. 14.
    Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. 9: 85–91 (2008)CrossRefGoogle Scholar
  15. 15.
    Dörnenburg H, Knorr D. Cellular permeabilization of cultured plant tissues by high electric field pulses or ultra high pressure for the recovery of secondary metabolites. Food Biotechnol. 7: 35–48 (1993)CrossRefGoogle Scholar
  16. 16.
    Ahmed J, Ramaswamy HS. High pressure processing of fruits and vegetables. Stewart Postharvest Rev. 2: 1–10 (2006)CrossRefGoogle Scholar
  17. 17.
    Zhang S, Xi J, Wang C. High hydrostatic pressure extraction of flavonoids from propolis. J. Chem. Technol. Biot. 80: 50–54 (2005)CrossRefGoogle Scholar
  18. 18.
    Zhang S, Chen R, Wu H, Wang C. Ginsenoside extraction from Panax quinquefolium L. (American ginseng) root by using ultrahigh pressure. J. Pharm. Biomed. Anal. 41: 57–63 (2006)CrossRefGoogle Scholar
  19. 19.
    Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 597: 176–189 (2007)CrossRefGoogle Scholar
  20. 20.
    Lim SB, Jung SK, Jwa MK. Extraction of valuable substances from citrus peel by supercritical carbon dioxide. Food Sci. Biotechnol. 11: 644–648 (2002)Google Scholar
  21. 21.
    Wang L, Yang B, Du X, Yang Y, Liu J. Optimization of conditions for extraction of acid-soluble collagen from grass carp (Ctenopharyngodon idella) by response surface methodology. Innov. Food Sci. Emerg. 9: 604–607 (2008)CrossRefGoogle Scholar
  22. 22.
    Myers RH, Montgomery DC. Response surface methodology. John Wiley & Sons, Inc., New York, NY, USA. pp. 208–350 (1995)Google Scholar
  23. 23.
    Song XL, Zhang QY, Wang ZM, Fu HZ, Qian RQ. A rapid and simple RP-HPLC method for quantification of kirenol in rat plasma after oral administration and its application to pharmacokinetic study. Biomed. Chromatogr. 25: 542–546 (2011)CrossRefGoogle Scholar
  24. 24.
    Zhang SQ, Bi HM, Liu CJ. Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Sep. Puri. Tech. 57: 277–282 (2007)CrossRefGoogle Scholar
  25. 25.
    Chena FF, Wang R, Shia YP. Molecularly imprinted polymer for the specific solid-phase extraction of kirenol from Siegesbeckia pubescens herbal extract. Talanta 89: 505–512 (2012)CrossRefGoogle Scholar
  26. 26.
    Durling NE, Catchpole OJ, Grey JB, Webby RF, Mitchell KA, Foo LY, Perry NB. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol-water mixtures. Food Chem. 101: 1417–1424 (2007)CrossRefGoogle Scholar
  27. 27.
    Nikrooz B, Zandrahimi M. Optimization of process variables and corrosion properties of a multi layer silica sol gel coating on AZ91D using the Box-Behnken design. J. Sol-Gel Sci. Techn. 59: 640–649 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mi-Bo Kim
    • 1
  • Ji-Eun Park
    • 2
  • Seon Wook Woo
    • 2
  • Sang-Bin Lim
    • 3
  • Jae-Kwan Hwang
    • 1
    Email author
  1. 1.Department of Biomaterials Science and EngineeringYonsei UniversitySeoulKorea
  2. 2.Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeoulKorea
  3. 3.Department of Food BioengineeringJeju National UniversityJejuKorea

Personalised recommendations