Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Antioxidant activity and β-glucan contents of hydrothermal extracts from maitake (Grifola frondosa)

  • 245 Accesses

  • 10 Citations


Maitake (Grifola frondosa) was hydrothermally extracted at 4 different temperatures (121, 130, 140, and 150°C) for 30 and 60 min, and the total phenolic content (TPC), antioxidant activity, and β-glucan content of the extracts was evaluated. The highest TPC was detected in the extract at 150°C treated for 60 min with 13.61 mg gallic acid equivalents (GAE)/g. The antioxidant activity of the maitake extracts, evaluated by determining DPPH radical scavenging activity (RSA), ABTS RSA, reducing power, and tyrosinase inhibitory activity increased with increasing treatment temperature and time. The content of β-glucan was the highest (5.13%) in the extract prepared at 140°C for 30min. These results suggest that hydrothermal extraction could be used as a tool to increase the antioxidant activity of maitake extracts.

This is a preview of subscription content, log in to check access.


  1. 1.

    Kubo K, Aoki H, Nanba H. Anti-diabetic activity present in the fruit body of Grifola frondosa (Maitake). Biol. Pharm. Bull. 17: 1106–1110 (1994)

  2. 2.

    Nanba H. Antitumor activity of orally administered sent in the from maitake mushroom (Grifola frondosa). J. Naturop. Med. 4: 10–15 (1993)

  3. 3.

    Adachi K, Nanba H, Otsuka M, Kuroda H. Blood pressure-lowering activity present in the fruit body of Grifola frondosa (maitake). Chem. Pharm. Bull. 36: 1000–1006 (1988)

  4. 4.

    Talpur NA, Echard BW, Fan AY, Jaffari O, Bagchi D, Preuss HG. Antihypertensive and metabolic effects of whole maitake mushroom powder and its fractions in two rat strains. Mol. Cell Biochem. 237: 129–136 (2002)

  5. 5.

    Deng G, Lin H, Seidman A, Fornier M, D’Andrea G, Wesa K, Yeung S, Cunningham-Rundles S, Vickers AJ, Cassileth B. A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: Immunological effects. J. Cancer Res. Clin. Oncol. 135: 1215–1221 (2009)

  6. 6.

    Mau JL, Chang CN, Huang SJ, Chen CC. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem. 87: 111–118 (2004)

  7. 7.

    Chen GT, Ma XM, Liu ST, Liao YL, Zhao GQ. Isolation, purification and antioxidant activities of polysaccharides from Grifola frondosa. Carbohydr. Polym. 89: 61–66 (2012)

  8. 8.

    King JW, York P, Kompella UB, Shekunov BV. Development and potential of critical fluid technology in the nutraceutical industry. pp. 579–614. In: Drug Delivery and Supercritical Fluid Technology. Marcel Dekker, New York, NY, USA (2004)

  9. 9.

    Smith RM. Extractions with superheated water. J. Chromatogr. A 975: 31–46 (2002)

  10. 10.

    Ramos L, Kristenson EM, Brinkman UA. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J. Chromatogr. A 975: 3–29 (2002)

  11. 11.

    Rodríguez-Meizoso I, Jaime L, Santoyo S, Señoráns FJ, Cifuentes A, Ibáñez E. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J. Pharm. Biomed. Anal. 51: 456–463 (2010)

  12. 12.

    Hassas-Roudsari M, Chang PR, Pegg RB, Tyler RT. Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem. 114: 717–726 (2009)

  13. 13.

    Narita Y, Inouye K. High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chem. 135: 943–949 (2012)

  14. 14.

    Seo HK, Lee SC. Antioxidant activity of subcritical water extracts from Chaga mushroom (Inonotus obliquus). Sep. Sci. Technol. 45: 198–203 (2010)

  15. 15.

    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature 408: 239–247 (2000)

  16. 16.

    Wu SJ, Ng LT. Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan. LWT-Food Sci. Technol. 41: 323–330 (2008)

  17. 17.

    Gutfinger T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 58: 966–968 (1981)

  18. 18.

    Jeong SM, Kim SY, Kim DR, Jo SC, Nam KC, Ahn DU, Lee SC. Effect of heat treatment on antioxidant activity of citrus peels. J. Agr. Food Chem. 52: 3389–3393 (2004)

  19. 19.

    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evan C. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26: 1231–1237 (1999)

  20. 20.

    Oyaizu M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. J. Jpn. Nutr. 44: 307–315 (1986)

  21. 21.

    Vanni A, Gastaldi D, Giunata G. Kinetic investigations on the double enzymatic activity of the tyrosinase mushroom. Ann. Chim. 80: 35–60 (1990)

  22. 22.

    Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fufita Y, Yasuhara T, Yoshida T, Okuda T. Effects of the interaction of tannins with coexisting substances. VI: Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 2016–2021 (1989)

  23. 23.

    Cheung LM, Cheung PCK, Ooi VEC. Antioxidant activity and total phenolics of edible mushroom extracts. Food. Chem. 81: 249–255 (2003)

  24. 24.

    Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acid. Free Radical Bio. Med. 20: 933–956 (1996)

  25. 25.

    Blois MS. Antioxidant determination by the use of a stable free radical. Nature 181: 1199–1200 (1958)

  26. 26.

    Jo EK, Heo DJ, Kim JH, Lee YH, Ju YC, Lee SC. The effects of subcritical water treatment on antioxidant activity of golden oyster mushroom. Food Bioprocess Tech. 6: 2555–2561 (2013)

  27. 27.

    Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 24: 1043–1048 (2011)

  28. 28.

    Zhao TT, Zhang QB, Qi HM, Zhang H, Niu XZ, Xu ZH, Li Z. Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. Int. J. Biol. Macromol. 38: 45–50 (2006)

  29. 29.

    Cavallero A, Empili S, Brighenti F, Stanca AM. High (1→3, 1→4)-β-glucan fractions in bread making and their effects on human glycemic response. J. Cereal Sci. 36: 59–66 (2002)

  30. 30.

    Kerckhoffs DA, Hornstra G, Mensink RP. Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. Am. J. Clin. Nutr. 78: 221–227 (2003)

Download references

Author information

Correspondence to Seung-Cheol Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shin, Y., Lee, S. Antioxidant activity and β-glucan contents of hydrothermal extracts from maitake (Grifola frondosa). Food Sci Biotechnol 23, 277–282 (2014). https://doi.org/10.1007/s10068-014-0038-z

Download citation


  • maitake
  • Grifola frondosa
  • hydrothermal extraction
  • antioxidant activity
  • β-glucan content