Advertisement

Food Science and Biotechnology

, Volume 22, Issue 6, pp 1567–1571 | Cite as

Method validation of 16 types of structural amino acids using an automated amino acid analyzer

  • You-Shin Shim
  • Won-Jin Yoon
  • Jaeho Ha
  • Dongwon Seo
  • Kwang-Won Lee
  • Woo-Young Lee
  • Kwang-Il Kwon
  • Tae-Seok Kang
  • Jin-Ha Lee
  • Hyun-Jeong Kim
  • Hae-Jung Kwak
  • Sam-Pin Lee
  • So-Jung Kim
  • Won-Kap Yun
  • Junsoo Lee
  • Jin-Bong Hwang
Research Note

Abstract

An analytical method for the simultaneous determination of 16 types of structural amino acids in infant formula using an automated amino acid analyzer was validated through tests of precision, accuracy and linearity. The automated analysis of the amino acids was performed on an ion-exchange packed column with a visible detector. The certificated reference material (CRM) 1546 from NIST was used as the test sample to determine the precision and accuracy of the analytical method. The regression analyses revealed good correlations [correlation coefficient (r 2)] that were greater than 0.99. The recovery values of the amino acids were ranged from 87.18 to 118.08%. The limits of detection and limits of quantification were less than 0.059 mg/100 g and less than 0.198 mg/100 g, respectively. The intra- and inter-day precisions were less than 14.62% in the CRM sample.

Keywords

amino acids automated amino acid analyzer analytical method validation post column reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ingrid R, Hans M. New naturally occurring amino acids. Angew. Chem. Int. Ed. Engl. 22: 816–828 (1983)CrossRefGoogle Scholar
  2. 2.
    Gómez-Ariza JL, Villegas-Portero MJ, Bernal-Daza V. Characterization and analysis of amino acids in orange juice by HPLC-MS/MS for authenticity assessment. Anal. Chim. Acta. 540: 221–230 (2005)CrossRefGoogle Scholar
  3. 3.
    Anderson NL, Anderson NG. Proteome and proteomics: New thechnologies, new concepts, and new words. Electrophoresis 19: 1853–1861 (1998)CrossRefGoogle Scholar
  4. 4.
    Miles CS, Ost TWB, Noble MA, Munro AW, Chapman SK. Protein engineering of cytochromes P-450. Biochim. Biophys. Acta 1543: 383–407 (2000)CrossRefGoogle Scholar
  5. 5.
    Kim BH, Lee HS, Jang YA, Lee JY, Cho YJ, Kim CI. Development of amino acid composition database for Korean foods. J. Food Compos. Anal. 22: 44–52 (2009)CrossRefGoogle Scholar
  6. 6.
    Calull M, Fábregas J, Marcé RM, Borrull F. Determination of free amino acids by precolumn derivatization with phenylisothiocyanate. Application to wine samples. Chromatographia 31: 272–276 (1991)CrossRefGoogle Scholar
  7. 7.
    Tateda N, Matsuhisa K, Hasebe K, Kitajima N, Miura T. Highperformance liquid chromatographic method for rapid and highly sensitive determination of histidine using postcolumn fluorescence detection with o-phthaldialdehyde. J. Chromatogr. B 718: 235–241 (1998)CrossRefGoogle Scholar
  8. 8.
    Rebane R, Oldekop ML, Herodes K. Comparison of amino acid derivatization reagents for LC-ESI-MS analysis. Introducing a novel phosphazene-based derivatization reagent. J. Chromatogr. B 904: 99–106 (2012)CrossRefGoogle Scholar
  9. 9.
    Harder U, Koletzko B, Peissner W. Quantification of 22 plasma amino acids combining derivatization and ion-pair LC-MS/MS. J. Chromatogr. B. 879: 495–504 (2011)CrossRefGoogle Scholar
  10. 10.
    Huub Waterval WA, Scheijen JLJM, Ortmans-Ploemen MJC, Habets-van der Poel CD, Bierau J. Quantitative UPLC-MS/MS analysis of underivatised amino acids in body fluids is a reliable tool for the diagnosis and follow-up of patients with inborn errors metabolism. Clin. Chimica Acta 407: 36–42 (2009)CrossRefGoogle Scholar
  11. 11.
    Calderó-Santiago M, Priego-Capote F, Galache-Osuna JG, Luque de Castro MD. Determination of essential amino acids in human serum by a targeting method based on automated SPE-LC-MS/MS: Discrimination between artherosclerotic patients. J. Pharm. Biomed. Anal. 70: 476–484 (2012)CrossRefGoogle Scholar
  12. 12.
    Rebane R, Herodes K. Comparison of three buffer solutions for amino acid derivatization and following analysis by liquid chromatography electrospray mass spectrometry. J. Chromatogr. A 1245: 134–142 (2012)CrossRefGoogle Scholar
  13. 13.
    van Leuken RGJ, Duchateau ALL, Kwakkenbos GTC. Thermospray liquid chromatography/mass spectrometry study of diastereomeric isoindole derivatives of amino acids and amino acid amides. J. Pharm. Biomed. Anal. 13: 1459–1464 (1995)CrossRefGoogle Scholar
  14. 14.
    Arnold MR, Kremer W, Lüdemann HD, Kalbitzer HR. 1H-NMR parameters of common amino acid residues measured in aqueous solutions of the linear tetrapeptides Gly-Gly-X-Ala at pressures between 0.1 and 200 MPa. Biophys. Chem. 96: 129–140 (2002)CrossRefGoogle Scholar
  15. 15.
    Armstrong CW, McGregor NR, Sheedy JR, Buttfield I, Butt HL, Gooley PR. NMR metabolic profiling of serum identifies amino acids disturbances in chronic fatigue syndrome. Clin. Chimica Acta 413: 1525–1531 (2012)CrossRefGoogle Scholar
  16. 16.
    Wishart DS, Bigam CG, Holm A, Hodges S, Sykes BD. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J. Biomol. NMR 5: 67–81 (1995)CrossRefGoogle Scholar
  17. 17.
    Johnson DW. Free amino acid quantification by LC-MS/MS using derivatization generated isotope-labelled standards. J. Chromatogr. B 879: 1345–1352 (2011)CrossRefGoogle Scholar
  18. 18.
    Kaspar H, Dettmer K, Gronwald W, Oefner PJ. Automated GC-MS analysisof free amino acids in biological fluids. J. Chromatogr. B 870: 222–232 (2008)CrossRefGoogle Scholar
  19. 19.
    Zampolli MG, Basaglia G, Dondi F, Sternberg R, Szopa C, Pietrogrande MC. Gas chromatography-mass spectrometry analysis of amino acid enantiomers as methyl chloroformate derivatives: Application to space analysis. J. Chromatogr. A 1150: 162–172 (2007)CrossRefGoogle Scholar
  20. 20.
    Jiménez-Martín E, Ruiz J, Pérez-Palacios T, Silva A, Antequera T. Gas chromatography-mass spectrometry method for the determination of free amino acids as their dimethyl-tert-butylsilyl (TBDMS) derivatives in animal source food. J. Agr. Food Chem. 60: 2456–2463 (2012)CrossRefGoogle Scholar
  21. 21.
    Moore S, Spackman DH, Stein WH. Chromatography of amino acids on sulfonated polystyrene resins. An improved system. Anal. Chem. 30: 1185–1190 (1958)CrossRefGoogle Scholar
  22. 22.
    Le Boucher J, Charret C, Coudray-Lucas C, Giboudeau J, Cynober L. Amino acid determination in biological fluids by automated ionexchange chromatography: Performance of Hitachi L-8500A. Clin. Chem. 43: 1421–1428 (1997)Google Scholar
  23. 23.
    Heems D, Luck G, Fraudeau C, Vérette E. Fully automated precolumn derivatization, on-line dialysis and high performance liquid chromatographic analysis of amino acids in food, beverages and feedstuff. J. Chromatogr. A 798: 9–17 (1998)CrossRefGoogle Scholar
  24. 24.
    Qu Y, Slocum RH, Fu J, Rasmussen WE, Rector HD, Miller, Coldwell JG. Quantitative amino acid analysis using a Beckman system gold HPLC 126AA analyzer. Clin. Chimica Acta 312: 153–162 (2001)CrossRefGoogle Scholar
  25. 25.
    AOAC. Official Method of Analysis of AOAC Intl. 18th ed. Method 994.12. Association of Official Analytical Communities, Arlington, VA, USA (2005)Google Scholar
  26. 26.
    Seo SS. High performance liquid chromatographic determination of Homocyteine and cystathionine in biological samples by derivatization with 6-amino-quinolyl-N-hydroxylsuccinimidyl carbamate (AQC). J. Korean Chem. Soc. 49: 278–282 (2005)CrossRefGoogle Scholar
  27. 27.
    Hong JL, Bi YC, Hui WY, Feng HY, Xing XL. Determination of amino acid in food and feed by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and reversed-phase liquid chromatographic separation. J. AOAC Int. 78: 736–744 (1995)Google Scholar
  28. 28.
    ICH. Guidance for Industry, Q2B Validation of Analytical Procedures: Methodology. ICH-Q2B, Kuala Lumpur, Malaysia. pp.71–76 (1996)Google Scholar
  29. 29.
    US Department of Health and Human Services (DHHS). Center for Veterinary Medicine (CVM): Guidance for Industry, Bioanalytical Method. Center for Drug Evaluation and Research (CDER), Food and Drug Administration, US department of Health and Human Services, Washington, DC, USA (2001)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • You-Shin Shim
    • 1
  • Won-Jin Yoon
    • 1
    • 2
  • Jaeho Ha
    • 1
  • Dongwon Seo
    • 1
  • Kwang-Won Lee
    • 2
  • Woo-Young Lee
    • 3
  • Kwang-Il Kwon
    • 4
  • Tae-Seok Kang
    • 5
  • Jin-Ha Lee
    • 5
  • Hyun-Jeong Kim
    • 6
  • Hae-Jung Kwak
    • 6
  • Sam-Pin Lee
    • 6
  • So-Jung Kim
    • 7
  • Won-Kap Yun
    • 7
  • Junsoo Lee
    • 8
  • Jin-Bong Hwang
    • 1
  1. 1.Food analysis CenterKorea Food Research InstituteGyeonggiKorea
  2. 2.College of Life Sciences and BiotechnologyKorea UniversitySeoulKorea
  3. 3.Nutrition Safety Policy Division, Food Nutrition and Dietary Safety BureauMinistry of Food and Drug safetyChungbukKorea
  4. 4.Dietary Life Safety Division, Food Nutrition and Dietary Safety BureauMinistry of Food and Drug safetyChungbukKorea
  5. 5.Nutrition and Functional Food Research, Food safety Evaluation DepartmentNational Institute of Food and Drug safety EvaluationChungbukKorea
  6. 6.The Center for Traditional Microorganism ResourceKeimyung UniversityDaeguKorea
  7. 7.Gyeongbuk Institute for Marine BioindustryGyeongbukKorea
  8. 8.Department of Food Science and TechnologyChungbuk National UniversityChungbukKorea

Personalised recommendations