Food Science and Biotechnology

, Volume 22, Issue 5, pp 1–12 | Cite as

Marine-derived bioactive materials for neuroprotection

  • Ratih Pangestuti
  • Se-Kwon KimEmail author
Research Review


The marine environment is a rich source of materials with significant biological activities. Isolation and investigation of bioactive materials from marine organisms is a topic of current research interest in the food industry. Among marine-derived bioactive materials, peptides, chitosan, sulfated polysaccharides, phlorotannins, and natural pigments are potential neuroprotective agents. This review elaborates on the neuroprotective mechanisms of marine-derived bioactive materials and emphasizes prospects for use in neuroprotection as part of nutraceuticals and functional foods.


neuroprotective marine material bioactivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bjarkam CR, Sørensen JC, Sunde NÅ, Geneser FA, Østergaard K. New strategies for the treatment of Parkinson’s disease hold considerable promise for the future management of neurodegenerative disorders. Biogerontology 2: 193–207 (2001)CrossRefGoogle Scholar
  2. 2.
    Ansari J, Siraj A, Inamdar N. Pharmacotherapeutic Approaches of Parkinson’s Disease. Int. J. Pharmacol. 6: 584–590 (2010)CrossRefGoogle Scholar
  3. 3.
    Kannappan R, Gupta S, Kim J, Reuter S, Aggarwal B. Neuroprotection by Spice-Derived Nutraceuticals: You Are What You Eat! Mol. Neurobiol. 44: 142–159 (2011)CrossRefGoogle Scholar
  4. 4.
    Narang S, Gibson D, Wasan AD, Ross EL, Michna E, Nedeljkovic SS, Jamison RN. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J. Pain 9: 254–264 (2008)CrossRefGoogle Scholar
  5. 5.
    Ho C, Simon JE, Shahidi F, Shao Y. Dietary Supplements. ACS Symposium Series. Vol. 987. ACS Publications, Washington, DC, USA (2008)CrossRefGoogle Scholar
  6. 6.
    Alasavar C, Shahidi F, Miyashita K, Wanasundara U. Handbook of Seafood Quality, Safety, and Health Applications. Wiley, New Delhi, India (2011)Google Scholar
  7. 7.
    Shahidi F, Janak Kamil Y. Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci. Technol. 12: 435–464 (2001)CrossRefGoogle Scholar
  8. 8.
    Kim S, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J. Func. Foods 2: 1–9 (2010)CrossRefGoogle Scholar
  9. 9.
    Swing J. What Future for the Oceans? Foreign Affairs 82: 139–152 (2003)CrossRefGoogle Scholar
  10. 10.
    Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 15: 3517–3555 (2010)CrossRefGoogle Scholar
  11. 11.
    Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Ann. Indian Acad. Neurol. 11: 13–19 (2008)CrossRefGoogle Scholar
  12. 12.
    Jorm AF, Jolley D. The incidence of dementia: A meta-analysis. Neurology 51:728–733 (1998)CrossRefGoogle Scholar
  13. 13.
    Pangestuti R, Kim S.K. Neuroprotective Properties of Chitosan and Its Derivatives. Marine Drugs 8: 2117–2128 (2010)CrossRefGoogle Scholar
  14. 14.
    Ehrenreich H, Sirén AL. Neuroprotection -what does it mean?-what means do we have? Eur. Arch. Psychiatry Clin. Neurosci. 251: 149–151 (2001)CrossRefGoogle Scholar
  15. 15.
    Behl C, Moosmann B. Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radic. Biol. Med. 33: 182–191 (2002)CrossRefGoogle Scholar
  16. 16.
    Gao HM, Liu B, Zhang W, Hong JS. Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol. Sci. 24: 395–401 (2003)CrossRefGoogle Scholar
  17. 17.
    Eftekharzadeh B, Khodagholi F, Abdi A, Maghsoudi N. Alginate protects NT2 neurons against H2O2-induced neurotoxicity. Carbohydr. Polym. 79: 1063–1072 (2010)CrossRefGoogle Scholar
  18. 18.
    Luo D, Zhang Q, Wang H, Cui Y, Sun Z, Yang J, Zheng Y, Jia J, Yu F, Wang X. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur. J. Pharmacol. 617: 33–40 (2009)CrossRefGoogle Scholar
  19. 19.
    Kietzmann T, Knabe W, Schmidt-Kastner R. Hypoxia and hypoxiainducible factor modulated gene expression in brain: Involvement in neuroprotection and cell death. Eur. Arch. Psychiatry Clin. Neurosci. 251: 170–178 (2001)CrossRefGoogle Scholar
  20. 20.
    Schwartz G, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: Improved behavioral and neuroanatomical recovery with riluzole. J. Neurosurg. Spine 94: 245–256 (2001)CrossRefGoogle Scholar
  21. 21.
    Woo MS, Park JS, Choi IY, Kim WK, Kim HS. Inhibition of MMP 3 or 9 suppresses lipopolysaccharide induced expression of proinflammatory cytokines and iNOS in microglia. J. Neurochem. 106: 770–780 (2008)CrossRefGoogle Scholar
  22. 22.
    Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3: 205–214 (2004)CrossRefGoogle Scholar
  23. 23.
    Akyol Ö, Herken H, Uz E, Fadıllıoğlu E, Ünal S, Söğüt S, Ozyurt H, Savas HA. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients: The possible role of oxidant/antioxidant imbalance. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 26: 995–1005 (2002)CrossRefGoogle Scholar
  24. 24.
    Moosmann B, Behl C. Antioxidants as treatment for neurodegenerative disorders. Exp. Opin. Investig. Drugs 11: 1407–1435 (2002)CrossRefGoogle Scholar
  25. 25.
    Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8: 57–69 (2007)CrossRefGoogle Scholar
  26. 26.
    Allen NJ, Barres BA. Neuroscience: Glia-more than just brain glue. Nature 457: 675–677 (2009)CrossRefGoogle Scholar
  27. 27.
    Kim SU, de Vellis J. Microglia in health and disease. J. Neurosci. Res. 81: 302–313 (2005)CrossRefGoogle Scholar
  28. 28.
    Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics 7:354–365 (2010)CrossRefGoogle Scholar
  29. 29.
    Mattson MP. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1: 120–129 (2000)CrossRefGoogle Scholar
  30. 30.
    Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 407: 802–809 (2000)CrossRefGoogle Scholar
  31. 31.
    Patockaa J, Stredab L. Brief review of natural nonprotein neurotoxins. ASA newsletter 89: 16–24 (2002)Google Scholar
  32. 32.
    Segura-Aguilar J, Kostrzewa R. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox. Res. 6: 615–630 (2004)CrossRefGoogle Scholar
  33. 33.
    Butterfield DA. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic. Res. 36: 1307–1313 (2002)CrossRefGoogle Scholar
  34. 34.
    Ryu BM, Qian ZJ, Kim SK. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-[kappa] B activation, and induces human osteoblastic and chondrocytic differentiation. Chem. Biol. Interact. 184: 413–422 (2010)CrossRefGoogle Scholar
  35. 35.
    A Aneiros A, Garateix A. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J. Chromatogr. B 803: 41–53 (2004)CrossRefGoogle Scholar
  36. 36.
    Shahidi F, Zhong Y. Bioactive Peptides. J. AOAC Int. 91: 914–931 (2008)Google Scholar
  37. 37.
    Chiba T, Nishimoto I, Aiso S, Matsuoka M. Neuroprotection against neurodegenerative diseases. Mol. Neurobiol. 35: 55–84 (2007)CrossRefGoogle Scholar
  38. 38.
    Dejda A, Sokolowska P, Nowak JZ. Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol. Rep. 57: 307–320 (2005)Google Scholar
  39. 39.
    Onoue S, Endo K, Ohshima K, Yajima T, Kashimoto K. The neuropeptide PACAP attenuates β-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 23: 1471–1478 (2002)CrossRefGoogle Scholar
  40. 40.
    Delgado M, Varela N, Gonzalez RE. Vasoactive intestinal peptide protects against β-amyloidinduced neurodegeneration by inhibiting microglia activation at multiple levels. Glia 56: 1091–1103 (2008)CrossRefGoogle Scholar
  41. 41.
    Vo TS, Ngo DH, Kim JA, Ryu B, Kim SK. An antihypertensive peptide from tilapia gelatin diminishes free radical formation in murine microglial cells. J. Agr. Food Chem. 59: 12193–12197 (2011)CrossRefGoogle Scholar
  42. 42.
    Pei X, Yang R, Zhang Z, Gao L, Wang J, Xu Y, Zhao M, Han X, Liu Z, Li Y. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6J mice. Food Chem. 118: 333–340 (2010)CrossRefGoogle Scholar
  43. 43.
    Je JY, Kim SK. Water-soluble chitosan derivatives as a BACE1 inhibitor. Bioorg. Med. Chem. 13: 6551–6555 (2005)CrossRefGoogle Scholar
  44. 44.
    Kim SK., Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62: 357–368 (2005)Google Scholar
  45. 45.
    Ravi Kumar MNV. A review of chitin and chitosan applications. React. Funct. Polym. 46: 1–27 (2000)CrossRefGoogle Scholar
  46. 46.
    Jeon YJ, Park PJ, Kim SK. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym. 44: 71–76 (2001)CrossRefGoogle Scholar
  47. 47.
    Jeon YJ, Shahidi F, Kim SK. Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Rev. Int. 16: 159–176 (2000)CrossRefGoogle Scholar
  48. 48.
    Turan K, Nagata K. Chitosan-DNA nanoparticles: The effect of cell type and hydrolysis of chitosan on in vitro DNA transfection. Pharm. Dev. Technol. 11: 503–12 (2006)CrossRefGoogle Scholar
  49. 49.
    Prabaharan M. Review paper: Chitosan derivatives as promising materials for controlled drug delivery. J. Biomater. Appl. 23: 5–36 (2008)CrossRefGoogle Scholar
  50. 50.
    Jeon YJ, Kim SK. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr. Polym. 41: 133–141 (2000)CrossRefGoogle Scholar
  51. 51.
    Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 151: 403–408 (1986)CrossRefGoogle Scholar
  52. 52.
    Je JY, Park PJ, Kim SK. Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food Chem. Toxicol. 42: 381–387 (2004)CrossRefGoogle Scholar
  53. 53.
    Rajapakse N, Kim MM, Mendis E, Huang R, Kim SK. Carboxylated chitooligosaccharides (CCOS) inhibit MMP-9 expression in human fibrosarcoma cells via down-regulation of AP-1. Biochim. Biophys. Acta 1760: 1780–1788 (2006)CrossRefGoogle Scholar
  54. 54.
    Kim MM, Kim SK. Chitooligosaccharides inhibit activation and expression of matrix metalloproteinase-2 in human dermal fibroblasts. FEBS Lett. 580: 2661–2666 (2006)CrossRefGoogle Scholar
  55. 55.
    van Ta Q, Kim MM, Kim SK. Inhibitory Effect of Chitooligosaccharides on Matrix Metalloproteinase-9 in Human Fibrosarcoma Cells (HT1080). Marine Biotechnol. 8: 593–599 (2006)CrossRefGoogle Scholar
  56. 56.
    Liu B, Liu W, Han B, Sun Y. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocininduced diabetic rats. World J. Gastroenterol. 13: 725–731 (2007)Google Scholar
  57. 57.
    Artan M, Karadeniz F, Karagozlu MZ, Kim MM, Kim SK. Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydr. Res. 345: 656–662 (2010)CrossRefGoogle Scholar
  58. 58.
    Yang EJ, Kim JG, Kim JY, Kim S, Lee N, Hyun CG. Antiinflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Centr. Eur. J. Biol. 5: 95–102 (2010)CrossRefGoogle Scholar
  59. 59.
    Liu D, Hsieh J, Fan X, Yang J, Chung T. Synthesis, characterization and drug delivery behaviors of new PCP polymeric micelles. Carbohydr. Polym. 68: 544–554 (2007)CrossRefGoogle Scholar
  60. 60.
    LaFerla FM, Green KN, Oddo S. Intracellular amyloid-[beta] in Alzheimer’s disease. Nat. Rev. Neurosci. 8: 499–509 (2007)CrossRefGoogle Scholar
  61. 61.
    Tabet N. Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing! Age Ageing 35: 336–338 (2006)CrossRefGoogle Scholar
  62. 62.
    Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306: 821–827 (2003)CrossRefGoogle Scholar
  63. 63.
    Martinez A, Castro A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin. Invest. Drugs 15: 1–12 (2005)CrossRefGoogle Scholar
  64. 64.
    Ibrahim F, André C, Thomassin M, Guillaume YC. Association mechanism of four acetylcholinesterase inhibitors (AChEIs) with human serum albumin: A biochromatographic approach. J. Pharmaceut. Biomed. Anal. 48: 1345–1350 (2008)CrossRefGoogle Scholar
  65. 65.
    Lee SH, Park JS, Kim SK, Ahn CB, Je JY. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by A[beta]25-35 in PC12 cells. Bioorg. Med. Chem. Lett. 19: 860–862 (2009)CrossRefGoogle Scholar
  66. 66.
    Yoon NY, Ngo DN, Kim SK. Acetylcholinesterase inhibitory activity of novel chitooligosaccharide derivatives. Carbohydr. Polym. 78: 869–872 (2009)CrossRefGoogle Scholar
  67. 67.
    Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, Cole GM, Small GW, Huang SC, Barrio JR. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J. Neurosci. 21: 1–5 (2001)Google Scholar
  68. 68.
    Lukiw WJ. Emerging amyloid beta (Ab) peptide modulators for the treatment of Alzheimer’s disease (AD). Expert Opin. Emerg. Drugs 13: 255–271 (2008)CrossRefGoogle Scholar
  69. 69.
    Okamura N, Suemoto T, Shiomitsu T, Suzuki M, Shimadzu H, Akatsu H, Yamamoto T, Arai H, Sasaki H, Yanai K, Staufenbiel M, Kudo Y, Sawada T. A novel imaging probe for in vivo detection of neuritic and diffuse amyloid plaques in the brain. J. Mol. Neurosci. 24: 47–255 (2004)CrossRefGoogle Scholar
  70. 70.
    Vassar R. β-Secretase (BACE) as a drug target for alzheimer’s disease. Adv. Drug Deliv. Rev. 54: 1589–1602 (2002)CrossRefGoogle Scholar
  71. 71.
    Hampel H, Shen Y. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a biological candidate marker of Alzheimer’s disease. Scan. J. Clin. Lab. Inv. 69: 8–12 (2009)CrossRefGoogle Scholar
  72. 72.
    Tang K, Hynan L, Baskin F, Rosenberg R. Platelet amyloid precursor protein processing: A bio-marker for Alzheimer’s disease. J. Neurol. Sci. 240: 53–58 (2006)CrossRefGoogle Scholar
  73. 73.
    Koo HN, Jeong HJ, Hong SH, Choi JH, An NH, Kim HM. High molecular weight water-soluble chitosan protects against apoptosis induced by serum starvation in human astrocytes. J. Nutr. Biochem. 13: 245–249 (2002)CrossRefGoogle Scholar
  74. 74.
    Zhou S, Yang Y, Gu X, Ding F. Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci. Lett. 444: 270–274 (2008)CrossRefGoogle Scholar
  75. 75.
    Kim MS, Sung MJ, Seo SB, Yoo SJ, Lim WK, Kim HM. Watersoluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid [beta] peptide and interleukin-1[beta]. Neurosci. Lett. 321: 105–109 (2002)CrossRefGoogle Scholar
  76. 76.
    Khodagholi F, Eftekharzadeh B, Maghsoudi N, Rezaei P. Chitosan prevents oxidative stress-induced amyloid β formation and cytotoxicity in NT2 neurons: involvement of transcription factors Nrf2 and NF-κB. Mol. Cell. Biochem. 337: 39–51 (2010)CrossRefGoogle Scholar
  77. 77.
    Pangestuti R, Bak SS, Kim SK. Attenuation of pro-inflammatory mediators in LPS-stimulated BV2 microglia by chitooligosaccharides via the MAPK signaling pathway. Int. J. Biol. Macromol. 49: 599–606 (2011)CrossRefGoogle Scholar
  78. 78.
    Ngo DH, Ngo DN, Vo TS, Ryu BM, Van TQ, Kim SK. Protective effects of aminoethyl-chitooligosaccharides against oxidative stress and inflammation in murine microglial BV-2 cells. Carbohydr. Polym. 88: 743–747 (2012)CrossRefGoogle Scholar
  79. 79.
    Jayakumar R, Nagahama H, Furuike T, Tamura H. Synthesis of phosphorylated chitosan by novel method and its characterization. Int. J. Biol. Macromol. 42: 335–339 (2008)CrossRefGoogle Scholar
  80. 80.
    Costa L, Fidelis G, Cordeiro S, Oliveira R, Sabry D, Cβmara R, Nobre L, Costa M, Almeida-Lima J, Farias E. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharmacother. 64: 21–28 (2010)CrossRefGoogle Scholar
  81. 81.
    Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules 13: 1671–1695 (2008)CrossRefGoogle Scholar
  82. 82.
    Cui Y, Zhang L, Zhang T, Luo D, Jia Y, Guo Z, Zhang Q, Wang X, Wang X. Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide activated primary microglia. Clin. Exp. Pharmacol. Physiol. 37: 422–428 (2010)CrossRefGoogle Scholar
  83. 83.
    Heales S, Bolaños J, Stewart V, Brookes P, Land J, Clark J. Nitric oxide, mitochondria and neurological disease. BBA-Bioenergetics 1410: 215–228 (1999)CrossRefGoogle Scholar
  84. 84.
    Lee J, Grabb M, Zipfel G, Choi D. Brain tissue responses to ischemia. J. Clin. Invest. 106: 723–731 (2000)CrossRefGoogle Scholar
  85. 85.
    Jhamandas JH, Wie MB, Harris K, MacTavish D, Kar S. Fucoidan inhibits cellular and neurotoxic effects of β-amyloid (Aβ) in rat cholinergic basal forebrain neurons. Eur. J. Neurosci. 21: 2649–2659 (2005)CrossRefGoogle Scholar
  86. 86.
    Cowan CM, Thai J, Krajewski S, Reed JC, Nicholson DW, Kaufmann SH, Roskams AJ. Caspases 3 and 9 Send a Pro-Apoptotic Signal from Synapse to Cell Body in Olfactory Receptor Neurons. J. Neurosci. 21: 7099–7109 (2001)Google Scholar
  87. 87.
    Vila M, Przedborski S. Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4: 365–375 (2003)CrossRefGoogle Scholar
  88. 88.
    Garrido J, Godoy J, Alvarez A, Bronfman M, Inestrosa N. Protein kinase C inhibits amyloid {beta} peptide neurotoxicity by acting on members of the Wnt pathway. FASEB J. 16: 1982–1984 (2002)Google Scholar
  89. 89.
    Lüder UH, Clayton MN. Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory-the first microscopic study. Planta 218: 928–937 (2004)CrossRefGoogle Scholar
  90. 90.
    Wijesekara I, Yoon N, Kim S. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. Biofactors 36: 408–414 (2010)CrossRefGoogle Scholar
  91. 91.
    Fallarero A, Loikkanen JJ, Männistö PT, Castañeda O, Vidal A. Effects of aqueous extracts of Halimeda incrassata (Ellis) Lamouroux and Bryothamnion triquetrum (S.G. Gmelim) Howe on hydrogen peroxide and methyl mercury-induced oxidative stress in GT1-7 mouse hypothalamic immortalized cells. Phytomed. 10: 39–47 (2003)CrossRefGoogle Scholar
  92. 92.
    Vidal NA, Motidome M, Mancini FJ, Fallarero LA, Tanae M, Torres L, Lapa A. Actividad antioxidante y ácidos fenólicos del alga marina Bryothamnion triquetrum (SG Gmelim) Howe; Antioxidant activity related to phenolic acids in the aqueous extract of the marine seaweed Bryothamnin triquetrum (SG Gmelim) Howe. Rev. Bras. Cienc. Farm. 37: 373–382 (2001)Google Scholar
  93. 93.
    Jung W, Heo S, Jeon Y, Lee C, Park Y, Byun H, Choi Y, Park S, Choi I. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J. Agr. Food Chem. 57: 4439–4446 (2009)CrossRefGoogle Scholar
  94. 94.
    Jung WK, Ahn YW, Lee SH, Choi YH, Kim SK, Yea SS, Choi I, Park SG, Seo SK, Lee SW, Choi IW. Ecklonia cava ethanolic extracts inhibit lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV2 microglia via the MAP kinase and NF-[kappa]B pathways. Food Chem. Toxicol. 47: 410–417 (2009)CrossRefGoogle Scholar
  95. 95.
    Myung C, Shin H, Bao H, Yeo S, Lee B, Kang J. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: Possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res. 28: 691–698 (2005)CrossRefGoogle Scholar
  96. 96.
    Yoon N, Chung H, Kim H, Choi J. Acetyl and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci. 74: 200–207 (2008)CrossRefGoogle Scholar
  97. 97.
    Jung H, Oh S, Choi J. Molecular docking studies of phlorotannins from Eisenia bicyclis with BACE1 inhibitory activity. Bioorg. Med. Chem. Lett. 20: 3211–3215 (2010)CrossRefGoogle Scholar
  98. 98.
    Tang K, Hynan L, Baskin F, Rosenberg R. Platelet amyloid precursor protein processing: A bio-marker for Alzheimer’s disease. J. Neurol. Sci. 240: 53–58 (2006)CrossRefGoogle Scholar
  99. 99.
    Pangestuti R, Kim SK. Neuroprotective Effects of Marine Algae. Mar. Drugs 9: 803–818 (2011)CrossRefGoogle Scholar
  100. 100.
    Roh MK, Uddin MS, Chun BS. Extraction of fucoxanthin and polyphenol from Undaria pinnatifida using supercritical carbon dioxide with co-solvent. Biotechnol. Bioproc. Eng. 13: 724–729 (2008)CrossRefGoogle Scholar
  101. 101.
    Shang YF, Kim SM, Lee WJ, Um BH. Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. J. Biosci. Bioeng. 111: 237–241 (2010)CrossRefGoogle Scholar
  102. 102.
    Kim SM, Shang YF, Um BH. A preparative method for isolation of fucoxanthin from Eisenia bicyclis by centrifugal partition chromatography. Phytochem. Anal. 22: 3222–329 (2011)Google Scholar
  103. 103.
    Delgado VF, Jiménez A, Paredes-López O. Natural pigments: Carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 40: 173–289 (2000)CrossRefGoogle Scholar
  104. 104.
    Khan S, Kong C, Kim J, Kim S. Protective effect of Amphiroa dilatata on ROS induced oxidative damage and MMP expressions in HT1080 cells. Biotechnol. Bioproc. Eng. 15: 191–198 (2010)CrossRefGoogle Scholar
  105. 105.
    Okuzumi J, Nishino H, Murakoshi M, Iwashima A, Tanaka Y, Yamane T, Fujita Y, Takahashi T. Inhibitory effects of fucoxanthin, a natural carotenoid, on N-myc expression and cell cycle progression in human malignant tumor cells. Cancer Lett. 55: 75–81 (1990)CrossRefGoogle Scholar
  106. 106.
    Ikeda K, Kitamura A, Machida H, Watanabe M, Negishi H, Hiraoka J, Nakano T. Effect of Undaria pinnatifida (Wakame) on the development of cerebrovascular diseases in stroke prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 30: 44–48 (2003)CrossRefGoogle Scholar
  107. 107.
    Khodosevich K, Monyer H. Signaling involved in neurite outgrowth of postnatally born subventricular zone neurons in vitro. BMC Neurosci. 11: 1–11 (2010)CrossRefGoogle Scholar
  108. 108.
    Ina A, Hayashi K, Nozaki H, Kamei Y. Pheophytin a, a low molecular weight compound found in the marine brown alga Sargassum fulvellum, promotes the differentiation of PC12 cells. Int. J. Dev. Neurosci. 25: 63–68 (2007)CrossRefGoogle Scholar
  109. 109.
    Ina A, Kamei Y. Vitamin B12, a chlorophyll-related analog to pheophytin a from marine brown algae, promotes neurite outgrowth and stimulates differentiation in PC12 cells. Cytotechnology 52: 181–187 (2006)CrossRefGoogle Scholar
  110. 110.
    Venugopal V, Shahidi F. Structure and composition of fish muscle. Food Rev. Int. 12: 175–197 (1996)CrossRefGoogle Scholar
  111. 111.
    Kalmijn S, van Boxtel MPJ, Ocké M, Verschuren WMM, Kromhout D, Launer LJ. Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62: 275–280 (2004)CrossRefGoogle Scholar
  112. 112.
    Falinska AM, Bascoul-Colombo C, Guschina IA, Good M, Harwood JL. The role of n-3 dietary polyunsaturated fatty acids in brain function and ameliorating Alzheimer’s disease: Opportunities for biotechnology in the development of nutraceuticals. Biocatal. Agric. Biotechnol. 1: 159–166 (2012)Google Scholar
  113. 113.
    Connor WE, Lowensohn R, Hatcher L. Increased docosahexaenoic acid levels in human newborn infants by administration of sardines and fish oil during pregnancy. Lipids 31:183–187 (1996)CrossRefGoogle Scholar
  114. 114.
    Ngo DH, Wijesekara I, Vo TS, Van Ta Q, Kim SK. Marine foodderived functional ingredients as potential antioxidants in the food industry: An overview. Food Res. Int. 44: 523–529 (2010)CrossRefGoogle Scholar
  115. 115.
    Jeon YJ, Kim SK. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr. Polym. 41: 133–141 (2000)CrossRefGoogle Scholar
  116. 116.
    Kim SK, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62: 357–368 (2005)CrossRefGoogle Scholar
  117. 117.
    Kim S, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J. Func. Foods 2: 1–9 (2010)CrossRefGoogle Scholar
  118. 118.
    Wijesinghe WAJP, Jeon YJ. Enzyme-assistant extraction (EAE) of bioactive components: A useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia 83: 6–12 (2012)CrossRefGoogle Scholar
  119. 119.
    Li B, Smith B, Hossain MM. Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method. Sep. Purif. Technol. 48: 189–196 (2006)CrossRefGoogle Scholar
  120. 120.
    McRory J, Sherwood NM. Two protochordate genes encode pituitary adenylate cyclase-activating polypeptide and related family members. Endocrinology 138: 2380–2390 (1997)CrossRefGoogle Scholar
  121. 121.
    Matsuda K, Yoshida T, Nagano Y, Kashimoto K, Yatohgo T, Shimomura H, Shioda S, Arimura A, Uchiyama M. Purification and primary structure of pituitary adenylate cyclase activating polypeptide (PACAP) from the brain of an elasmobranch, stingray, Dasyatis akajei. Peptides 19: 1489–1495 (1998)CrossRefGoogle Scholar
  122. 122.
    Wang Y, Conlon JM. Purification and structural characterization of vasoactive intestinal polypeptide from the trout and bowfin. Gen. Comp. Endocr. 98: 94–101 (1995)CrossRefGoogle Scholar
  123. 123.
    Kim SK, Mendis E. Bioactive compounds from marine processing byproducts-a review. Food Res. Int. 39: 383–393 (2006)CrossRefGoogle Scholar
  124. 124.
    Zuta C, Simpson B, Chan H, Phillips L. Concentrating PUFA from mackerel processing waste. J. Am. Oil Chem. Soc. 80: 933–936 (2003)CrossRefGoogle Scholar
  125. 125.
    Sun T, Pigott G, Herwig R. Lipase-assisted concentration of n3 polyunsaturated fatty acids from Viscera of farmed atlantic Salmon (Salmo salar L.). J. Food Sci. 67: 130–136 (2002)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Marine Bioprocess Research CenterPukyong National UniversityBusanKorea
  2. 2.Marine Biochemistry Laboratory, Department of ChemistryPukyong National UniversityBusanKorea

Personalised recommendations