Food Science and Biotechnology

, Volume 22, Issue 3, pp 781–786

Sea lettuce (Ulva fasciata) extract has an inhibitory effect on proinflammatory cytokine production in CpG-stimulated bone marrow-derived macrophages and dendritic cells

  • Zahid Manzoor
  • Sohyun Kim
  • Doobyeong Chae
  • Eun-Sook Yoo
  • Hee-Kyoung Kang
  • Jin-Won Hyun
  • Nam Ho Lee
  • In Soo Suh
  • Young-Sang Koh
Research Article

Abstract

This report was designed to study inhibitory effect of sea lettuce (Ulva fasciata) extract (UFE) on proinflammatory cytokine production in bone marrow-derived macrophages (BMDM) and dendritic cells (BMDC). The UFE (0–50 μg/mL) pre-treatment showed a dose dependant inhibitory effect on interlukin (IL)-12 p40, IL-6, and tumor necrosis factor (TNF)-α productions in CpG-stimulated BMDMs and BMDCs as compared to non-treated controls. The UFE pre-treatment exhibited strong inhibitory effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK) while it showed moderate inhibition on nuclear factor (NF)-κB activation as indirectly evaluated by degradation of IκBα. In activator protein (AP)-1 and NF-κB reporter gene assay, the UFE pre-treatment showed moderate inhibitory effect on both AP-1- and NF-κBdependent reporter gene activities. Thus, these results suggest that inhibitory effect of UFE on pro-inflammatory cytokine production may correlate with partial inhibition of both AP-1 and NF-κB pathways. Hence, our data warrant further studies concerning potentials of sea lettuce for medicinal food.

Keywords

Ulva fasciata p38 mitogen-activated protein kinase pro-inflammatory cytokine inflammation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499–511 (2004)CrossRefGoogle Scholar
  2. 2.
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu. Rev. Immunol. 21: 335–376 (2003)CrossRefGoogle Scholar
  3. 3.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 11: 373–384 (2010)CrossRefGoogle Scholar
  4. 4.
    Yuk JM, Jo EK. Toll-like receptors and innate immunity. J. Bacteriol. Virol. 41: 225–235 (2011)CrossRefGoogle Scholar
  5. 5.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 392: 245–252 (1998)CrossRefGoogle Scholar
  6. 6.
    Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ. The nature of the principal type 1 interferon-producing cells in human blood. Science 284: 1835–1837 (1999)CrossRefGoogle Scholar
  7. 7.
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 140: 805–820 (2010)CrossRefGoogle Scholar
  8. 8.
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Tolllike receptor recognizes bacterial DNA. Nature 408: 740–745 (2000)CrossRefGoogle Scholar
  9. 9.
    Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C, Taniguchi T. Spatiotemporal regulation of MyD88-IRF-7 signaling for robust type-I interferon induction. Nature 434: 1035–1040 (2005)CrossRefGoogle Scholar
  10. 10.
    Koh YS. Nucleic acid recognition and signaling by Toll-like receptor 9: Compartment-dependent regulation. J. Bacteriol. Virol. 41: 131–132 (2011)CrossRefGoogle Scholar
  11. 11.
    Hommes DW, Peppelenbosch MP, van Deventer SJH. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52: 144–151 (2002)CrossRefGoogle Scholar
  12. 12.
    Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911–1912 (2002)CrossRefGoogle Scholar
  13. 13.
    Kelman D, Posner EK, McDermid KJ, Tabandera NK, Wright PR, Wright AD. Antioxidant activity of Hawaiian marine algae. Mar. Drugs 10: 403–416 (2012)CrossRefGoogle Scholar
  14. 14.
    Carvalho AFU, Portela MCC, Sousa MB, Martins FS, Rocha FC, Farias DF, Feitosa JPA. Physiological and physico-chemical characterization of dietary fibre from the green seaweed Ulva fasciata Delile. Braz. J. Biol. 69: 969–977 (2009)Google Scholar
  15. 15.
    Selvin J, Huxley AJ, Lipton AP. Immunomodulatory potential of marine secondary metabolites against bacterial diseases of shrimp. Aquaculture 230: 241–248 (2004)CrossRefGoogle Scholar
  16. 16.
    Selvin J, Premnath LA. Biopotentials of Ulva fasciata and Hypnea musciformis collected from the peninsular coast of India. J. Mar. Sci. Technol. 12: 1–6 (2004)Google Scholar
  17. 17.
    Vijayavel K, Martinez JA. In vitro antioxidant and antimicrobial activities of two Hawaiian marine limu: Ulva fasciata (Chlorophyta) and Gracilaria salicornia (Rhodophyta). J. Med. Food 13: 1494–1499 (2010)CrossRefGoogle Scholar
  18. 18.
    Koo JE, Hong HJ, Dearth A, Kobayashi KS, Koh YS. Intracellular invasion of Orientia tsutsugamushi activates inflammasome in ASC-dependent manner. PLoS One 7: e39042 (2012)CrossRefGoogle Scholar
  19. 19.
    Yun JH, Koo JE, Koh YS. Mitogen-activated protein kinases and tumor necrosis factor α responses of macrophages infected with Orientia tsutsugamushi. World J. Microb. Biot. 25: 2157–2164 (2009)CrossRefGoogle Scholar
  20. 20.
    Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Keys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–746 (1994)CrossRefGoogle Scholar
  21. 21.
    Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S. Host innate immune receptors and beyond: Making sense of microbial infections. Cell Host Microbe 3: 352–363 (2008)CrossRefGoogle Scholar
  22. 22.
    McInnes IB, Leung BP, Sturrock RD, Field M, Liew FY. Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-α production in rheumatoid arthritis. Nat. Med. 3: 189–195 (1997)CrossRefGoogle Scholar
  23. 23.
    Saklatvala J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr. Opin. Pharmacol. 4: 372–377 (2004)CrossRefGoogle Scholar
  24. 24.
    Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. R. 68: 320–344 (2004)CrossRefGoogle Scholar
  25. 25.
    Kracht M, Saklatvala J. Transcriptional and post-transcriptional control of gene expression in inflammation. Cytokine 20: 91–106 (2002)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Zahid Manzoor
    • 1
    • 2
  • Sohyun Kim
    • 1
    • 2
  • Doobyeong Chae
    • 1
    • 2
  • Eun-Sook Yoo
    • 1
    • 2
  • Hee-Kyoung Kang
    • 1
    • 2
  • Jin-Won Hyun
    • 1
    • 2
  • Nam Ho Lee
    • 3
  • In Soo Suh
    • 4
  • Young-Sang Koh
    • 1
    • 2
  1. 1.School of MedicineJeju National UniversityJejuKorea
  2. 2.Institute of Medical ScienceJeju National UniversityJejuKorea
  3. 3.Department of Chemistry, College of Natural SciencesJeju National UniversityJejuKorea
  4. 4.Jeju Biodiversity Research InstituteJeju TechnoparkJejuKorea

Personalised recommendations