Food Science and Biotechnology

, Volume 21, Issue 6, pp 1533–1539 | Cite as

Antifungal activity and action mode of pinocembrin from propolis against Penicillium italicum

  • Litao Peng
  • Shuzhen Yang
  • Yun Jiang Cheng
  • Feng Chen
  • Siyi Pan
  • Gang Fan
Research Article

Abstract

The antifungal activity and possible mode of action of pinocembrin isolated from propolis against Penicillium italicum were investigated. Pinocembrin exhibited strong antifungal activity against P. italicum in a dose-dependent manner. Respiration rates of P. italicum during spore germination and mycelial growth were significantly inhibited when exposure to pinocembrin. The respirations of mitochondria in state 2 and state 3 from mycelia were significantly inhibited in the presence of this compound. The phosphorylated adenosine nucleotides levels in hyphae of P. italicum treated with pinocembrin were significantly low and energy charge value became unstable. Unltrastructure of hyphae was seriously damaged with pinocembrin incubation for 24 h, which was further confirmed by the increase of relative ionic leakage and soluble protein loss of P. italicum mycelia treated with pinocembrin. It was concluded that pinocembrin inhibited the mycelial growth of P. italicum by interfering energy homeostasis and cell membrane damage of the pathogen. Pinocembrin would be a promising bioactive compound for treatment of P. italicum infections on postharvest citrus fruit.

Keywords

pinocembrin antifungal Penicillium italicum respiration membrane disruption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tripathi P, Dubey NK. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Tec. 32: 235–245 (2004)CrossRefGoogle Scholar
  2. 2.
    Díaz-Carballo D, Malak S, Bardenheuer W, Freistuehler M, Peter Reusch H. The contribution of plukenetione A to the anti-tumoral activity of Cuban propolis. Bioorg. Med. Chem. 16: 9635–9643 (2008)CrossRefGoogle Scholar
  3. 3.
    Kurauchi Y, Hisatsune A, Isohama Y, Mishima S, Katsuki H. Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brainderived neurotrophic factor. Brit. J. Pharmacol. 166: 1151–1168 (2012)CrossRefGoogle Scholar
  4. 4.
    Chirumbolo S. Propolis as anti-inflammatory and anti-allergic compounds: Which role for flavonoids? Int. Immunopharmacol. 11: 1386–1387 (2011)CrossRefGoogle Scholar
  5. 5.
    Righi AA, Alves TR, Negri G, Marques LM, Breyer H, Salatino A. Brazilian red propolis: Unreported substances, antioxidant and antimicrobial activities. J. Sci. Food Agr. 91: 2363–2370 (2011)CrossRefGoogle Scholar
  6. 6.
    Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, Popov S. Antibacterial, antifungal, and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 64: 235–240 (1999)CrossRefGoogle Scholar
  7. 7.
    Meneses EA, Durango DL, García CM. Antifungal activity against postharvest fungi by extracts from Colombian propolis. Quím. Nova 32: 2011–2017 (2009)CrossRefGoogle Scholar
  8. 8.
    Yang S, Peng L, Cheng Y, Chen F, Pan S. Control of citrus green and blue molds by Chinese propolis. Food Sci. Biotechnol. 19: 1303–1308 (2010)CrossRefGoogle Scholar
  9. 9.
    Probst IS, Sforcin JM, Rall VLM, Fernandes AAH, Fernandes Junior A. Antimicrobial activity of propolis and essential oils and synergism between these natural products. J. Venom. Anim. Toxins 17: 159–167 (2011)Google Scholar
  10. 10.
    Aguero MB, Gonzalez M, Lima B, Svetaz L, Sanchez M, Zacchino S, Feresin GE, Schmeda-Hirschmann G, Palermo J, Wunderlin D, Tapia A. Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) exudates: Phytochemical characterization and antifungal activity. J. Agr. Food Chem. 58: 194–201 (2010)CrossRefGoogle Scholar
  11. 11.
    Hiroshi F, Katsumi G, Mamoru T. Two antimicrobial flavones from the leaves of Glycyrrhiza glabra. Chem. Pharm. Bull. 36: 4174–4176 (1998)Google Scholar
  12. 12.
    Quiroga EN, Sampietro DA, Soberon JR, Sgariglia MA, Vattuone MA. Propolis from the northwest of Argentina as a source of antifungal principles. J. Appl. Microbiol. 101: 103–110 (2006)CrossRefGoogle Scholar
  13. 13.
    Yang ZH, Liu R, Li XX, Tian S, Liu QS, Du GH. Development and validation of a high-performance liquid chromatographic method for determination of pinocembrin in rat plasma: Application to pharmacokinetic study. J. Pharm. Biomed. Anal. 49: 1277–1281 (2009)CrossRefGoogle Scholar
  14. 14.
    Yang SZ, Peng LT, Su XJ, Chen F, Cheng YJ, Fan G, Pan SY. Bioassay-guided isolation and identification of antifungal components from propolis against Penicillium italicum. Food Chem. 127: 210–215 (2011)CrossRefGoogle Scholar
  15. 15.
    Perrucci S, Mancianti F, Cioni PL, Flamini G, Morelli I, Macchioni G. In vitro antifungal activity of essential oils against some isolates of Microsporum canis and Microsporum gypseum. Planta Med. 60: 184–187 (1994)CrossRefGoogle Scholar
  16. 16.
    Zivic M, Zakrzewska J, Stanic M, Cvetic T, Zivanovic B. Alternative respiration of fungus phycomyces blakesleeanus. Anton. Leeuw. Int. J. G. 95: 207–217 (2009)CrossRefGoogle Scholar
  17. 17.
    Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)CrossRefGoogle Scholar
  18. 18.
    Yi C, Qu HX, Jiang YM, Shi J, Duan XW, Joyce DC, Li YB. ATPinduced changes in energy status and membrane integrity of harvested litchi fruit and its relation to pathogen resistance. J. Phytopathol. 156: 365–371 (2008)CrossRefGoogle Scholar
  19. 19.
    Pradet A, Raymond P. Adenine nucleotide ratios and adenylate energy charge in energy metabolism. Annu. Rev. Plant Physio. 34: 199–224 (1983)CrossRefGoogle Scholar
  20. 20.
    Campana R, Patrone V, Franzini IT, Diamantini G, Vittoria E, Baffone W. Antimicrobial activity of two propolis samples against human Campylobacter jejuni. J. Med. Food 12: 1050–1056 (2009)CrossRefGoogle Scholar
  21. 21.
    Castro ML, Vilela WR, Zauli RC, Ikegaki M, Rehder VL, Foglio MA, Alencar SMde, Rosalen PL. Bioassay guided purification of the antimicrobial fraction of a Brazilian propolis from Bahia state. BMC Complem. Altern. M. 9: 1–6 (2009)CrossRefGoogle Scholar
  22. 22.
    Mercan N, Kivrak I, Duru M, Katircioglu H, Gulcan S, Malci S, Acar G, Salih B. Chemical composition effects onto antimicrobial and antioxidant activities of propolis collected from different regions of Turkey. Ann. Microbiol. 56: 373–378 (2006)CrossRefGoogle Scholar
  23. 23.
    Martins VD, Dinamarco TM, Curti C, Uyemura SA. Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets. J. Bioenerg. Biomembr. 43: 81–88 (2011)CrossRefGoogle Scholar
  24. 24.
    Haraguchi H, Tanimoto K, Tamura Y, Mizutani K, Kinoshita T. Mode of anti-bacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 48: 125–129 (1998)CrossRefGoogle Scholar
  25. 25.
    Raafat D, Bargen KV, Haas A, Sahl HG. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microb. 74: 3764–3773 (2008)CrossRefGoogle Scholar
  26. 26.
    Borutaite V. Mitochondria as decision-markers in cell death. Environ. Mol. Mutagen. 51: 406–416 (2010)Google Scholar
  27. 27.
    Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem. J. 435: 297–312 (2011)CrossRefGoogle Scholar
  28. 28.
    Taubitz A, Bauer B, Heesemann J, Ebel F. Role of respiration in the germination process of the pathogenic mold Aspergillus fumigatus. Curr. Microbiol. 54: 354–360 (2007)CrossRefGoogle Scholar
  29. 29.
    Valenti D, Tullo A, Caratozzolo MF, Merafina RS, Scartezzini P, Marra E, Vacca RA. Impairment of F1F0-ATPase, adenine nucleotide translocator, and adenylate kinase causes mitochondrial energy deficit in human skin fibroblasts with chromosome 21 trisomy. Biochem. J. 431: 299–310 (2010)CrossRefGoogle Scholar
  30. 30.
    Crawford RMM, Braendle R. Oxygen deprivation stress in a changing environment. J. Exp. Bot. 47: 145–159 (1996)CrossRefGoogle Scholar
  31. 31.
    Hwang B, Hwang JS, Lee JY, Lee DJ. Antifungal properties and mode of action of psacotheasin, a novel konttin-type peptide derived from psacothea hilaris. Biochem. Bioph. Res. Co. 400: 352–357 (2010)CrossRefGoogle Scholar
  32. 32.
    Li X, Yu HY, Lin YF, Teng HM, Du L, Ma GG. Morphological changes of Fusarium oxysporum induced by CF66I, an antifungal compound from Burkholderia cepacia. Biotechnol. Lett. 32: 1487–1495 (2010)CrossRefGoogle Scholar
  33. 33.
    Nielsen SB, Otzen DE. Impact of the antimicrobial peptide novicidin on membrane structure and integrity. J. Colloid Interf. Sci. 345: 248–256 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Litao Peng
    • 1
  • Shuzhen Yang
    • 1
  • Yun Jiang Cheng
    • 2
  • Feng Chen
    • 3
  • Siyi Pan
    • 1
  • Gang Fan
    • 1
  1. 1.College of Food Science and TechnologyHuazhong Agricultural UniversityWuhan, HubeiChina
  2. 2.College of Horticulture and ForestryHuazhong Agricultural UniversityWuhan, HubeiChina
  3. 3.Department of Food, Nutrition and Packaging SciencesClemson UniversityClemsonUSA

Personalised recommendations