Food Science and Biotechnology

, Volume 21, Issue 5, pp 1421–1431 | Cite as

Evaluation of antioxidant and pharmacological properties of Psychotria nilgiriensis Deb & gang

  • Murugaiyan Iniyavan
  • Devadoss Sangeetha
  • Shanmugam Saravanan
  • Thangaraj ParimelazhaganEmail author
Research Article


The purpose of the present study was to investigate the antioxidant and pharmacological properties of fruit, stem, and leaf extract of Psychotria nilgiriensis. Acetone extract of P. nilgiriensis fruit was found to have highest total phenolics (505.74 mg GAE/g extract), tannin (460.78 mg GAE/g extract), and flavonoid (67.78 mg RE/g extract) content. In vitro antioxidant studies revealed that the acetone extract of fruit posses significant antioxidant activity in DPPH radical scavenging, ABTS·+, and ferric reducing antioxidant power (FRAP) assays. In vivo studies revealed that P. nilgiriensis fruit (400 mg/kg) showed good analgesic activity in hot plate method (72%), acetic acid induced writhing test (53%) and also showed significant in carrageenan induced inflammation (73.54%). GC/MS analysis of fruit showed the presence of sesquiterpenes. The study highlights the significant medicinal value of the plant.


antioxidant analgesic anti-inflammatory Psychotria nilgiriensis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang L, Hu JJ, Lin JW, Fang WS, Du GH. Anti-inflammatory and analgesic effects of ethanol and aqueous extracts of Pterocephalus hookeri (C.B. Clarke) Höeck. J. Ethnopharmacol. 123: 510–514 (2009)CrossRefGoogle Scholar
  2. 2.
    Dandiya PC, Kulkarni SK. Introduction to Pharmacology Including Toxicology and Practicals. 5th ed. Vallabh Prakashan, Delhi, India. pp. 131–132 (1995)Google Scholar
  3. 3.
    Sudha S, Mohan VR, Kumaresan S, Murugan C, Athiperumalsami T. Ethnomedicinal plants used by the tribals of Kalakad-Mundanthurai Tiger Reserve (KMTR), Westren Ghats, Tamil Nadu for the treatment of rheumatism. Indian J. Tradit. Know. 9: 502–509 (2010)Google Scholar
  4. 4.
    Siddhuraju P, Becker K. Studies on antioxidant activities of mucuna seed (Mucuna pruriens var. utilis) extract and various non-protein amino/imino acids through in vitro models. J. Sci. Food Agr. 83: 1517–1524 (2003)CrossRefGoogle Scholar
  5. 5.
    Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559 (1999)CrossRefGoogle Scholar
  6. 6.
    Yen WJ, Chang LW, Duh PN. Antioxidant activity of peanut seed testa and its antioxidative components, ethyl protocatechuate. Food Sci. Technol. 38: 193–200 (2005)Google Scholar
  7. 7.
    Blios MS. Antioxidants determination by the use of a stable free radical. Nature 26: 1199–1200 (1958)CrossRefGoogle Scholar
  8. 8.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)CrossRefGoogle Scholar
  9. 9.
    Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–277 (1971)CrossRefGoogle Scholar
  10. 10.
    Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315: 161–169 (1994)CrossRefGoogle Scholar
  11. 11.
    Pulido R, Bravo L, Sauro-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agr. Food Chem. 48: 3396–3402 (2000)CrossRefGoogle Scholar
  12. 12.
    Duh PD, Tu YY, Yen GC. Antioxidant activity of water extract of harng jyur (Chrysanthemum morifolium Ramat). Lebensm. -Wiss. Technol. 32: 269–277 (1999)CrossRefGoogle Scholar
  13. 13.
    Kennedy GL, Ferenz RL, Burgess BA. Estimation of acute oral toxicity in rats by determination of the approximate lethal dose rather than the LD50. J. Appl. Toxicol. 6: 145–148 (1986)CrossRefGoogle Scholar
  14. 14.
    Eddy NB, Leimbach D. Synthetic analgesics. II. Dithienylbutenyland dithienyl butylamines. J. Pharmacol. Exp. Ther. 107: 385–393 (1953)Google Scholar
  15. 15.
    Koster RM, Anderson M, De-Beer EJ. Acetic acid for analgesic screening. Fed. Proc. 18: 412–418 (1959)Google Scholar
  16. 16.
    Ghosh MN. Evaluation of analgesic activity. pp. 69–71. In: Fundamentals of Experimental Pharmacology. 2nd ed. Scientific Book Agency, Calcutta, India (2005)Google Scholar
  17. 17.
    Dorman HJD, Koşar M, Kirsti Kahlos, Holm Y, Hiltunen R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agr. Food Chem. 51: 4563–4569 (2003)CrossRefGoogle Scholar
  18. 18.
    Cao G, Soc E, Prior RL. Antioxidant and prooxidant behaviour of avonoids: Structure activity relationships. Free Radical Bio. Med. 22: 749–760 (1997)CrossRefGoogle Scholar
  19. 19.
    Zeng WC, Zheng NW, Chen ZX. The effect of vitamin C on tyrosinase catalytic reaction. Chin. J. Biochem. Pharm. 22: 300–302 (2005)Google Scholar
  20. 20.
    Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agr. Food Chem. 46: 1887–1892 (1998)CrossRefGoogle Scholar
  21. 21.
    Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J. Agr. Food Chem. 50: 1619–1624 (2002)CrossRefGoogle Scholar
  22. 22.
    Gordon MH. The mechanism of antioxidant action in vitro. pp. 1–18. In: Food Antioxidants. Hudson BJF (ed). Elsevier Applied Science, London, UK (1990)CrossRefGoogle Scholar
  23. 23.
    Halvorsen BL, Carlsen MH, Phillips KM, Bohn SK, Holte K, Jacobs DR Jr, Blomhoff R. Content of redox-active compounds (i.e., antioxidants) in foods consumed in the United States. Am. J. Clin. Nutr. 84: 95–135 (2006)Google Scholar
  24. 24.
    Gulcin I, Buyukokuroglu ME, Oktay M, Kufrevioglu IO. On the in vitro antioxidant properties of melatonin. J. Pineal Res. 33: 167–171 (2002)CrossRefGoogle Scholar
  25. 25.
    Amador TA, Elisabetsky E, Souza DO. Effects of Psychotria colorata alkaloids in brain opioid system. Neurochem. Res. 21: 97–102 (1996)CrossRefGoogle Scholar
  26. 26.
    Elisabetsky E, Amador TA, Albuquerque RR, Nunes DS, Carvalho Ado C. Analgesic activity of Psychotria colorata (Wild, ex R. & S.) Muell. Arg. alkaloids. J. Ethnopharmacol. 48: 77–83 (1995)CrossRefGoogle Scholar
  27. 27.
    Zhang L, Hu JJ, Lin JW, Fang WS, Du GH. Anti-inflammatory and analgesic effects of ethanol and aqueous extracts of Pterocephalus hookeri (C.B. Clarke) Höeck. J. Ethnopharmacol. 123: 510–514 (2009)CrossRefGoogle Scholar
  28. 28.
    Dawson J, Sedgwick AD, Edwards JCW, Lees P. A comparative study of the cellular, exudative, and histological responses to carrageenan, dextran, and zymosan in the mouse. Int. J. Tissue React. 13: 171–185 (1991)Google Scholar
  29. 29.
    Stahl P, Kissau L, Mazitschek R, Huwe A, Furet P, Giannis A, Waldmann H. Total synthesis and biological evaluation of the Nakijiquinone. J. Am. Chem. Soc. 123: 11586–11593 (2001)CrossRefGoogle Scholar
  30. 30.
    Terés S, Barceló-Coblijn G, Benet M, Álvarez R, Bressani R, Halver JE, Escribá PV. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. P. Natl. Acad. Sci. USA 105: 13811–13816 (2008)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Murugaiyan Iniyavan
    • 1
  • Devadoss Sangeetha
    • 1
  • Shanmugam Saravanan
    • 1
  • Thangaraj Parimelazhagan
    • 1
    Email author
  1. 1.Bioprospecting Laboratory, Department of BotanyBharathiar UniversityCoimbatoreIndia

Personalised recommendations