Food Science and Biotechnology

, Volume 21, Issue 5, pp 1335–1342 | Cite as

Combination effect of phospholipids and n-3 polyunsaturated fatty acids on rat cholesterol metabolism

  • Ryota Hosomi
  • Kenji Fukunaga
  • Midori Fukao
  • Munehiro Yoshida
  • Hirofumi Arai
  • Seiji Kanda
  • Toshimasa Nishiyama
  • Teruyuki Kanada
Research Article


This study evaluated phospholipids (PLs) containing n-3 polyunsaturated fatty acids (n-3 PUFAs) for their specific inherent effects and effects due to a combination of the presence of glycerophosphate structure and n-3 PUFAs on cholesterol metabolism in rats. Rats were fed a diet of AIN-93G containing soybean oil (SO, 7%), SO (5.8%)+fish oil (1.2%), SO (5.2%)+soybean PLs (1.8%), SO (5.2%)+PLs containing n-3 PUFAs (1.8%), and SO (4.0%)+fish oil (1.2%)+soybean PLs (1.8%). Diets with PLs containing n-3 PUFAs, and soybean PLs in combination with fish oil, resulted in decreased serum and liver cholesterol levels through enhancement of fecal cholesterol excretion and suppression of liver sterol regulatory element binding protein-2 mRNA expression compared with the diet containing soybean oil alone. This study shows that soybean PLs with added triacylglycerol that included n-3 PUFAs have the same effects on cholesterol metabolism as PLs containing n-3 PUFAs, and that these could be of benefit to people.


n-3 polyunsaturated fatty acid phospholipid cholesterol metabolism bile acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lands WE, Hamazaki T, Yamazaki K, Okuyama H, Sakai K, Goto Y, Hubbard VS. Changing dietary patterns. Am. J. Clin. Nutr. 51: 991–993 (1990)Google Scholar
  2. 2.
    Toshima H. Coronary artery disease trends in Japan. Jpn. Circ. J. 58: 166–172 (1994)CrossRefGoogle Scholar
  3. 3.
    Martin MJ, Hulley SB, Browner WS, Kuller LH, Wentworth D. Serum cholesterol, blood pressure, and mortality: Implications from a cohort of 361,662 men. Lancet 2: 933–936 (1986)CrossRefGoogle Scholar
  4. 4.
    Knopp RH, Paramsothy P, Atkinson B, Dowdy A. Comprehensive lipid management versus aggressive low-density lipoprotein lowering to reduce cardiovascular risk. Am. J. Cardiol. 101: 48B–57B (2008)CrossRefGoogle Scholar
  5. 5.
    Childs MT, Bowlin JA, Ogilvie JT, Hazzard WR, Albers JJ. The contrasting effects of a dietary soya lecithin product and corn oil on lipoprotein lipids in normolipidemic and familial hypercholesterolemic subjects. Atherosclerosis 38: 217–228 (1981)CrossRefGoogle Scholar
  6. 6.
    Rampone AJ, Machida CM. Mode of action of lecithin in suppressing cholesterol absorption. J. Lipid Res. 22: 744–752 (1981)Google Scholar
  7. 7.
    LeBlanc MJ, Brunet S, Bouchard G, Lamireau T, Yousef IM, Gavino V, Lévy E, Tuchweber B. Effects of dietary soybean lecithin on plasma lipid transport and hepatic cholesterol metabolism in rats. J. Nutr. Biochem. 14: 40–48 (2003)CrossRefGoogle Scholar
  8. 8.
    Chung SY, Moriyama T, Uezu E, Uezu K, Hirata R, Yohena N, Masuda Y, Kokubu T, Yamamoto S. Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia. J. Nutr. 125: 1484–1489 (1995)Google Scholar
  9. 9.
    McDaniel MA, Maier SF, Einstein GO. “Brain-specific” nutrients: A memory cure? Nutrition 19: 957–975 (2003)CrossRefGoogle Scholar
  10. 10.
    Ma X, Zhao J, Lieber CS. Polyenylphosphatidylcholine attenuates non-alcoholic hepatic fibrosis and accelerates its regression. J. Hepatol. 24: 604–613 (1996)CrossRefGoogle Scholar
  11. 11.
    Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, Hunter D, Manson JE. Fish and ω-3 fatty acid intake and risk of coronary heart disease in women. J. Am. Med. Assoc. 287: 1815–1821 (2002)CrossRefGoogle Scholar
  12. 12.
    Robinson DR, Xu LL, Tateno S, Guo M, Colvin RB. Suppression of autoimmune disease by dietary n-3 fatty acids. J. Lipid Res. 34: 1435–1444 (1993)Google Scholar
  13. 13.
    Larson MK, Ashmore JH, Harris KA, Vogelaar JL, Pottala JV, Sprehe M, Harris WS. Effects of ω-3 acid ethyl esters and aspirin, alone and in combination, on platelet function in healthy subjects. Thromb. Haemostasis 100: 634–641 (2008)Google Scholar
  14. 14.
    Shirouchi B, Nagao K, Inoue N, Ohkubo T, Hibino H, Yanagita T. Effect of dietary ω-3 phosphatidylcholine on obesity-related disorders in obese Otsuka Long-Evans Tokushima fatty rats. J. Agr. Food Chem. 55: 7170–7176 (2007)CrossRefGoogle Scholar
  15. 15.
    Ikemoto A, Ohishi M, Sato Y, Hata N, Misawa Y, Fujii Y, Okuyama H. Reversibility of n-3 fatty acid deficiency-induced alterations of learning behavior in the rat: Level of n-6 fatty acids as another critical factor. J. Lipid Res. 42: 1655–1663 (2001)Google Scholar
  16. 16.
    Hiratsuka S, Ishihara K, Kitagawa T, Wada S, Yokogoshi H. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice. J. Nutr. Sci. Vitaminol. 54: 501–506 (2008)CrossRefGoogle Scholar
  17. 17.
    Hosokawa M, Sato A, Ishigamori H, Kohno H, Tanaka T, Takahashi K. Synergistic effects of highly unsaturated fatty acid-containing phosphatidyl-ethanolamine on differentiation of human leukemia HL-60 cells by dibutyryl cyclic adenosine monophosphate. Jpn. J. Cancer Res. 92: 666–672 (2001)CrossRefGoogle Scholar
  18. 18.
    Hosomi R, Fukunaga K, Arai H, Kanda S, Nishiyama T, Kanada T, Yoshida M. Effect of phospholipid n-3 polyunsaturated fatty acids on rat lipid metabolism. Eur. J. Lipid Sci. Tech. 112: 537–544 (2010)Google Scholar
  19. 19.
    Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123: 1939–1951 (1993)Google Scholar
  20. 20.
    Prevot AF, Mordret FX. Utilisation des colonnes capillaries de verre pour lánalyse des corps gras par chromotographie en phase gazeuse (Using glass capillaries columns for the analysis of fats by chromatography in gaseous phase). Rev. Fse. Corps Gras. 23: 409–423 (1976)Google Scholar
  21. 21.
    Erdahl WL, Stolyhwo A, Privett OS. Analysis of soybean lecithin by thin layer and analytical liquid chromatography. J. Am. Oil Chem. Soc. 50: 513–515 (1973)CrossRefGoogle Scholar
  22. 22.
    Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. P. Natl. Acad. Sci. USA 95: 5987–5992 (1998)CrossRefGoogle Scholar
  23. 23.
    Bligh E, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917 (1959)CrossRefGoogle Scholar
  24. 24.
    Bruusgaard A, Sorensen H, Gilhuus-Moe CC, Skålhegg BA. Bile acid determination with different preparations of 3α-hydroxysteroid dehydrogenase. Clin. Chim. Acta 77: 387–389 (1977)CrossRefGoogle Scholar
  25. 25.
    Cohn JS, Kamili A, Wat E, Chung RW, Tandy S. Reduction in intestinal cholesterol absorption by various food components: Mechanisms and implications. Atherosclerosis Suppl. 11: 45–48 (2010)CrossRefGoogle Scholar
  26. 26.
    Imaizumi K, Mawatari K, Murata M, Ikeda I, Sugano M. The contrasting effect of dietary phosphatidylethanolamine and phosphatidylcholine on serum lipoproteins and liver lipids in rats. J. Nutr. 113: 2403–2411 (1983)Google Scholar
  27. 27.
    Mastellone I, Polichetti E, Grès S, de la Maisonneuve C, Domingo N, Marin V, Lorec AM, Farnarier C, Portugal H, Kaplanski G, Chanussot F. Dietary soybean phosphatidylcholines lower lipidemia: Mechanisms at the levels of intestine, endothelial cell, and hepatobiliary axis. J. Nutr. Biochem. 11: 461–466 (2000)CrossRefGoogle Scholar
  28. 28.
    Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303: 1201–1204 (2004)CrossRefGoogle Scholar
  29. 29.
    Ordovas JM, Tai ES. The babel of the ABCs: Novel transporters involved in the regulation of sterol absorption and excretion. Nutr. Rev. 60: 30–33 (2002)Google Scholar
  30. 30.
    Mathur SN, Watt KR, Field FJ. Regulation of intestinal NPC1L1 expression by dietary fish oil and docosahexaenoic acid. J. Lipid Res. 48: 395–404 (2007)CrossRefGoogle Scholar
  31. 31.
    Imaizumi K, Murata M, Sugano M. Effect of dietary polyunsaturated phospholipid on the chemical composition of serum lipoproteins in rat. J. Nutr. Sci. Vitaminol. 28: 281–294 (1982)CrossRefGoogle Scholar
  32. 32.
    Shirouchi B, Nagao K, Furuya K, Inoue N, Inafuku M, Nasu M, Otsubo K, Koga S, Matsumoto H, Yanagita T. Effect of dietary phosphatidylinositol on cholesterol metabolism in Zucker (fa/fa) rats. J. Oleo Sci. 58: 111–115 (2009)CrossRefGoogle Scholar
  33. 33.
    Vlahcevic ZR, Pandak WM, Stravitz RT. Regulation of bile acid biosynthesis. Gastroenterol. Clin. N. 28: 1–25 (1999)CrossRefGoogle Scholar
  34. 34.
    Frøyland L, Vaagenes H, Asiedu DK, Garras A, Lie O, Berge RK. Chronic administration of eicosapentaenoic acid and docosahexaenoic acid as ethyl esters reduced plasma cholesterol and changed the fatty acid composition in rat blood and organs. Lipids 31: 169–178 (1996)CrossRefGoogle Scholar
  35. 35.
    Brown MS, Goldstein JL. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331–340 (1997)CrossRefGoogle Scholar
  36. 36.
    Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. P. Natl. Acad. Sci. USA 96: 11041–11048 (1999)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Ryota Hosomi
    • 1
    • 2
  • Kenji Fukunaga
    • 1
  • Midori Fukao
    • 1
  • Munehiro Yoshida
    • 1
  • Hirofumi Arai
    • 3
  • Seiji Kanda
    • 4
  • Toshimasa Nishiyama
    • 4
  • Teruyuki Kanada
    • 5
  1. 1.Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and BioengineeringKansai UniversitySuita, OsakaJapan
  2. 2.Division of Human Living SciencesTottori CollegeKurayoshi, TottoriJapan
  3. 3.Department of Biotechnology and Environmental ChemistryKitami Institute of TechnologyKitami, HokkaidoJapan
  4. 4.Department of Public HealthKansai Medical UniversityMoriguchi, OsakaJapan
  5. 5.Department of Research & DevelopmentBizen ChemicalOkayamaJapan

Personalised recommendations