Advertisement

Food Science and Biotechnology

, Volume 21, Issue 5, pp 1285–1291 | Cite as

Comparison on proximate composition and nutritional profile of red and black sea cucumbers (Apostichopus japonicus) from Ulleungdo(Island) and Dokdo(Island), Korea

  • Moon-Hee Lee
  • Yeon-Kye KimEmail author
  • Ho Sung Moon
  • Kyoung-Duck Kim
  • Gwan-Gyu Kim
  • Hyeon-Ah Cho
  • Na Young Yoon
  • Kil Bo Sim
  • Hee-Yeon Park
  • Doo-Seog Lee
  • Chi-Won Lim
  • Ho-Dong Yoon
  • Sang-Kuk Han
Research Article

Abstract

The proximate composition, fatty acid, and amino acid profile of the body wall and viscera of each red and black sea cucumber (Apostichopus japonicus) from Ulleungdo(Island) and Dokdo(Island) in Korea were compared. Moisture, ash, crude protein, and crude lipid contents ranged between 80.26–91.49, 2.57–6.85, 1.13–3.99, and 0.14–2.12%, respectively. The fatty acid values varied depending on the species and the regions of collection. The anteiso C17:0, C16:1Δ9, C17:1Δ7, C18:1Δ11, and C16:2Δ7 were only observed in the body wall. Among the tested fatty acids, the C18:1Δ11 was specific in red sea cucumber, and C20:4Δ6 (17.7%) and C20:5Δ3 (17.6%) were the predominant polyunsaturated fatty acids (PUFA) in all samples. The contents of the C18:0 dimethyl acetal (C18:0 DMA), C16:1Δ7, C16:1Δ5, and C18:1Δ5 were compared in details. Total amino acids (TAA) of body wall were 1.3–1.9 times higher than those of viscera. Glutamic acid and aspartic acid constituted the major TAA of sea cucumbers. The ratio of essential amino acids (EAA): nonessential amino acids (NEAA) on TAA ranged from 1.15 to 0.67 of sea cucumbers. Viscera of red sea cucumber from Dokdo(Island) were rich in free amino acids (FAA) and showed a high content in leucine.

Keywords

black sea cucumber fatty acid proximate composition red sea cucumber total amino acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aydin M, Sevgili H, Tufan H, Emre Y, Köse S. Proximate composition and fatty acid profile of three different fresh and dried commercial sea cucumbers from Turkey. Int. J. Food Sci. Tech. 46: 500–508 (2011)CrossRefGoogle Scholar
  2. 2.
    Kanno M, Kijima A. Quantitative and qualitative evaluation on the color variation of the Japanese sea cucumber Stichopus japonicus. Fish. Sci. 69: 806–812 (2003)CrossRefGoogle Scholar
  3. 3.
    Cui FX, Xue CH, Li XJ, Zhang YW, Dong P, Fu XY, Gao X. Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus. Food Chem. 100: 1120–1125 (2007)CrossRefGoogle Scholar
  4. 4.
    Fredalina BD, Ridzwan BH, Zainal Abidin AA, Kaswandi MA, Zaiton H, Zali I, Kittakoop P, Mat Jais AM. Fatty acid compositions in local sea cucumber, Stichopus chloronotus, for wound healing. Gen. Pharmacol. 33: 337–340 (1999)CrossRefGoogle Scholar
  5. 5.
    Lu Y, Wang BL. The research progress of antitumorous effectiveness of Stichopus japonicus acid mucopolysaccharide in north of China. Am. J. Med. Sci. 337: 195–198 (2009)CrossRefGoogle Scholar
  6. 6.
    Yang A, Zhou Z, Dong Y, Jiang B, Wang X, Chen Z, Guan X, Wang B, Sun D. Expression of immune-related genes in embryos and larvae of sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 29: 839–845 (2010)CrossRefGoogle Scholar
  7. 7.
    Tian F, Zhang X, Tong Y, Yi Y, Zhang S, Li L, Sun P, Lin L, Ding J. PE, a new sulfated saponin from sea cucumber, exhibits antiangiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol. Ther. 4: 874–882 (2005)CrossRefGoogle Scholar
  8. 8.
    Tanaka Y. Seasonal changes occurring in the gonad of Stichopus japonicus. Bull. Fac. Fish., Hokkaido Univ. 9: 29–36 (1958)Google Scholar
  9. 9.
    Kashenko SD. Acclimation of the sea cucumber Apostichopus japonicus to decreased salinity at the blastula and gastrula stages: Its effect on the desalination resistance of larvae at subsequent stages of development. Russ. J. Mar. Biol. 26: 422–426 (2000)CrossRefGoogle Scholar
  10. 10.
    AOAC. Official Methods of Analysis of AOAC Intl. 16th ed. Method 942.05-983.18. Association of Official Analytical Chemists, Washington, DC, USA (1995)Google Scholar
  11. 11.
    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917 (1959)CrossRefGoogle Scholar
  12. 12.
    AOCS. Official Methods and Recommended Practice of the AOCS. 4th ed. Method Ce 1b-89. American Oil Chemists’ Society, Champaign, IL, USA (1990)Google Scholar
  13. 13.
    Hamilton RJ, Rossell JB. Analysis of Oils and Fats. Elsevier Applied Science Publisher Ltd., Barking, UK. pp. 157–159 (1986)Google Scholar
  14. 14.
    Zhong Y, Khan MA, Shahidi F. Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa). J. Agr. Food Chem. 55: 1188–1192 (2007)CrossRefGoogle Scholar
  15. 15.
    Jing W, Chaoqun H, Sigang F. Chemical composition and nutritional quality of sea cucumbers. J. Sci. Food Agr. 90: 2469–2474 (2010)CrossRefGoogle Scholar
  16. 16.
    Kasai T. Lipid contents and fatty acid composition of total lipid of sea cucumber Stichopus japonicus and konowata (salted sea cucumber entrails). Food Sci. Technol. Res. 9: 45–48 (2003)CrossRefGoogle Scholar
  17. 17.
    Svetashev VI, Levin VS, Lam CN, Nga DT. Lipid and fatty acid composition of holothurians from tropical and temperate waters. Comp. Biochem. Physiol. 96B: 489–494 (1991)Google Scholar
  18. 18.
    Sargent JR, Hopkins CCE, Seiring JV, Youngson A. Partial characterization of organic material in surface sediments from Balsfjorden, northern Norway in relation to its origin and nutritional value for sediment-ingesting animals. Mar. Biol. 76: 87–94 (1983)CrossRefGoogle Scholar
  19. 19.
    Morris RJ, Culkin F. Fish. Vol. 2, pp. 19–46. In: Marine Biogenic Lipids, Fats, and Oils. Ackmann RG (ed). CRC Press, Inc., Boca Raton, FL, USA (1989)Google Scholar
  20. 20.
    Ginger ML, Billett DSM, Maskenzie KL. Organic matter assimilation and selective feeding by holothurians in the deep sea: Some observations and comments. Progr. Oceanogr. 50: 401–421 (2001)CrossRefGoogle Scholar
  21. 21.
    Neto RR, Wolff GA, Billett DSM, Mackenzie KL, Thompson A. The influence of changing food supply on the lipid biochemistry of deep-sea holothurians. Deep Sea Res. Pt. I 53: 516–527 (2006)CrossRefGoogle Scholar
  22. 22.
    Kaneda T. Biosynthesis of branched chain fatty acids. J. Biol. Chem. 238: 1222–1228 (1963)Google Scholar
  23. 23.
    Gibson RA. Australia fish — An excellent source of both arachidonic acid and 3 polyunsaturated fatty acid. Lipids 18: 743–752 (1983)CrossRefGoogle Scholar
  24. 24.
    Croft KD, Beilin LJ, Legge FM, Vandongen R. Effects of diets enriched in eicosapentaenoic or docosahexaenoic acids on prostanoid metabolism in the rat. Lipids 22: 647–650 (1987)CrossRefGoogle Scholar
  25. 25.
    Bowman WC, Rand MJ. Textbook of Pharmacology. 2nd ed. Blackwell Scientific Publications, Oxford, UK. pp. 43.1–43.51 (1980)Google Scholar
  26. 26.
    Naczk M, Williams J, Brennan K, Liyanapathirana C, Shahidi F. Compositional characteristics of green crab (Carcinus maenas). Food Chem. 88: 429–434 (2004)CrossRefGoogle Scholar
  27. 27.
    Inhamuns AJ, Franco MRB, Batista WS. Seasonal variations in total fatty acid composition of muscles and eye sockets of tucunare (Cichla sp.) from the Brazilizn Amazon area. Food Chem. 117: 272–275 (2009)CrossRefGoogle Scholar
  28. 28.
    Solms J. The taste of amino acids, peptides, and proteins. J. Agr. Food Chem. 17: 686–688 (1969)CrossRefGoogle Scholar
  29. 29.
    Lioe HN, Apriyantono A, Takara K, Wada K, Yasuda M. Umami taste enhancement of MSG/NaCl mixtures by subthreshold l-α-aromatic amino acids. J. Food Sci. 70: 401–405 (2005)CrossRefGoogle Scholar
  30. 30.
    Layman DK. The role of leucine in weight loss diets and glucose homeostasis. J. Nutr. 133: 261–267 (2003)Google Scholar
  31. 31.
    Layman DK, Walker DA. Potential importance of leucine in treatment of obesity and the metabolic syndrome. J. Nutr. 136: 319–323 (2006)Google Scholar
  32. 32.
    Cota D, Proulx K, Blacke Smith KA, Kozma SC, Thomas G. Hypothalamic mTOR signaling regulates food intake. Science 312: 927–930 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Moon-Hee Lee
    • 1
  • Yeon-Kye Kim
    • 1
    • 5
    Email author
  • Ho Sung Moon
    • 1
  • Kyoung-Duck Kim
    • 2
  • Gwan-Gyu Kim
    • 3
  • Hyeon-Ah Cho
    • 1
  • Na Young Yoon
    • 1
  • Kil Bo Sim
    • 1
  • Hee-Yeon Park
    • 1
  • Doo-Seog Lee
    • 1
  • Chi-Won Lim
    • 1
  • Ho-Dong Yoon
    • 1
  • Sang-Kuk Han
    • 4
  1. 1.Food and Safety Research DivisionNational Fisheries Research & Development Institute (NFRDI)BusanKorea
  2. 2.Aquafeed Research CenterNational Fisheries Research & Development Institute (NFRDI)Pohang, GyeongbukKorea
  3. 3.Gyeongsangbuk-do Fisheries Technology CenterPohang, GyeongbukKorea
  4. 4.Division of Ocean System EngineeringMokpo National Maritime UniversityMokpo, JeonnamKorea
  5. 5.Aquaculture Industry Division, SSFRINational Fisheries Research & Development Institute (NFRDI)Yeosu, JeonnamKorea

Personalised recommendations