Advertisement

Food Science and Biotechnology

, Volume 21, Issue 4, pp 1157–1162 | Cite as

Effect of Dongchunghacho (Cordyceps militaris) on hyperglycemia and dyslipidemia in type 2 diabetic db/db mice

  • Ha-Neul Choi
  • Min-Jung Kang
  • Soo-Mi Jeong
  • Min Jeong Seo
  • Byoung Won Kang
  • Yong Kee Jeong
  • Jung-In KimEmail author
Research Article

Abstract

Controlling hyperglycemia and dyslipidemia is associated with reduced risks for diabetic complications. The present study examined the effect of dongchunghacho (Cordyceps militaris; CM) on hyperglycemia and dyslipidemia in an animal model of type 2 diabetes. Fiveweek-old db/db mice were fed an AIN-93G diet or a diet containing 1% CM water extract, whereas db/+ mice were offered the AIN-93G diet for 6 weeks. Consumption of CM significantly decreased blood glycated hemoglobin and serum glucose levels, as well as homeostasis model assessment for insulin resistance (HOMA-IR), in db/db mice. CM significantly lowered serum triglyceride and total cholesterol levels, and increased HDL-cholesterol level. CM water extract inhibited rat intestinal α-glucosidase, with an IC50 of 182 μg/mL in vitro. These results indicate that CM exerted hypoglycemic and hypolipidemic effects in db/db mice.

Keywords

Cordyceps militaris glucose triglyceride cholesterol db/db mice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kahn SE. The relative contributions of insulin resistance and β-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46: 3–19 (2003)CrossRefGoogle Scholar
  2. 2.
    O’Keefe JH, Miles JM, Harris WH, Moe RM, McCallister BD. Improving the adverse cardiovascular prognosis of type 2 diabetes. Mayo Clin. Proc. 74: 171–180 (1999)CrossRefGoogle Scholar
  3. 3.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in the diabetes control in insulin-dependent diabetes mellitus. New Engl. J. Med. 329: 977–986 (1993)CrossRefGoogle Scholar
  4. 4.
    van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B. The global burden of diabetes and its complications: An emerging pandemic. Eur. J. Cardiovasc. Prev. Rehabil. 17(Suppl. 1): S3–S8 (2010)Google Scholar
  5. 5.
    American Diabetes Association. Management of dyslipidemia in adults with diabetes (Position Statement). Diabetes Care 22: 56–59 (1999)CrossRefGoogle Scholar
  6. 6.
    Paterson RR. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69: 1469–1495 (2008)CrossRefGoogle Scholar
  7. 7.
    Ng TB, Wang HX. Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57: 1509–1519 (2005)CrossRefGoogle Scholar
  8. 8.
    Das SK, Masuda M, Sakurai A, Sakakibara M. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects. Fitoterapia 81: 961–968 (2010)CrossRefGoogle Scholar
  9. 9.
    Lo HC, Tu ST, Lin KC, Lin SC. The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life Sci. 74: 2897–2908 (2004)CrossRefGoogle Scholar
  10. 10.
    Zhang G, Huang Y, Bian Y, Wong JH, Ng TB, Wang H. Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats. Appl. Microbiol. Biot. 72: 1152–1156 (2006)CrossRefGoogle Scholar
  11. 11.
    Choi SB, Park CH, Choi MK, Jun DW, Park S. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci. Biotech. Bioch. 68: 2257–2264 (2004)CrossRefGoogle Scholar
  12. 12.
    Kim DJ, Kim JM, Kim TH, Baek JM, Kim HS, Choe M. Antidiabetic effects of mixed extracts from Lycium chinense, Cordyceps militaris, and Acanthopanax senticosus. Korean J. Plant Res. 23: 423–429 (2010)Google Scholar
  13. 13.
    Standl E, Baumgartl HJ, Fuchtenbusch M, Stemplinger J. Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes. Metab. 1: 215–220 (1999)CrossRefGoogle Scholar
  14. 14.
    Koh JB. The effects of Cordyceps militaris on lipid metabolism, protein levels, and enzyme activation in rats fed a high fat diet. Korean J. Nutr. 35: 414–420 (2002)Google Scholar
  15. 15.
    El Ashry FE, Mahmoud MF, El Maraghy NN, Ahmed AF. Effect of Cordyceps sinensis and taurine either alone or in combination on streptozotocin induced diabetes. Food Chem. Toxicol. 50: 1159–1165 (2011)Google Scholar
  16. 16.
    Oki T, Matsui T, Osajima Y. Inhibitory effect of α-glucosidase inhibitors varies according to its origin. J. Agr. Food Chem. 47: 550–553 (1999)CrossRefGoogle Scholar
  17. 17.
    Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio heart study. Diabetes Care 20: 1087–1092 (1997)CrossRefGoogle Scholar
  18. 18.
    Hanefeld M. The role of acarbose in the treatment of non-insulindependent diabetes mellitus. J. Diabetes Complicat. 12: 228–237 (1998)CrossRefGoogle Scholar
  19. 19.
    Sancheti S, Sancheti S, Bafna M, Lee SH, Seo SY. Persimmon leaf (Diospyros kaki), a potent α-glucosidase inhibitor and antioxidant: Alleviation of postprandial hyperglycemia in normal and diabetic rats. J. Med. Plant. Res. 5: 1652–1658 (2011)Google Scholar
  20. 20.
    Mohamed Sham Shihabudeen H, Hansi Priscilla D, Thirumurugan K. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats. Nutr. Metab. 8: 46 (2011)CrossRefGoogle Scholar
  21. 21.
    Kumar S, Narwal S, Kumar V, Prakash O. α-Glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 5: 19–29 (2011)CrossRefGoogle Scholar
  22. 22.
    Yun YH, Han SH, Lee SJ, Ko SK, Lee CK, Ha NJ, Kim KJ. Antidiabetic effects of CCCA, CMEMSS, and cordycepin from Cordyceps militaris and the immune responses in streptozotocininduced diabetic mice. Nat. Prod. Sci. 9: 291–298 (2003)Google Scholar
  23. 23.
    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840–846 (2006)CrossRefGoogle Scholar
  24. 24.
    Lebovitz HE. α-Glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Care 6: 132–145 (1998)Google Scholar
  25. 25.
    Meneilly GS, Ryan EA, Radziuk J. Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes Care 23: 1162–1167 (2000)CrossRefGoogle Scholar
  26. 26.
    Mori K, Kobayashi C, Tomita T, Inatomi S, Ikeda M. Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (eringi), Grifola frondosa (maitake), and Hypsizygus marmoreus (bunashimeji) in apolipoprotein E-deficient mice. Nutr. Res. 28: 335–342 (2008)CrossRefGoogle Scholar
  27. 27.
    Kim JI, Kang MJ, Im J, Seo YJ, Lee YM, Song JH, Lee JH, Kim ME. Effect of king oyster mushroom (Pleurotus eryngii) on insulin resistance and dyslipidemia in db/db mice. Food Sci. Biotechnol. 19: 239–242 (2010)CrossRefGoogle Scholar
  28. 28.
    Gao J, Lian ZQ, Zhu P, Zhu HB. Lipid-lowering effect of cordycepin (3′-deoxyadenosine) from Cordyceps militaris on hyperlipidemic hamsters and rats. Yao Xue Xue Bao 46: 669–676 (2011)Google Scholar
  29. 29.
    Kiho T, Yamane A, Hui J, Usui S, Ukai S. Polysaccharides in fungi. XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol. Pharm. Bull. 19: 294–296 (1996)CrossRefGoogle Scholar
  30. 30.
    Taskinen MR. Diabetic dyslipidemia: From basic research to clinical practice. Diabetologia 46: 733–749 (2003)CrossRefGoogle Scholar
  31. 31.
    Brown WV, Clark L, Falko JM, Guyton JR, Rees TJ, Schonfeld G, Lopes-Virella MF. Optimal management of lipids in diabetes and metabolic syndrome. J. Clin. Lipidol. 2: 335–342 (2008)CrossRefGoogle Scholar
  32. 32.
    Proctor SD, Mamo JC. Retention of fluorescent-labelled chylomicron remnants within the intima of the arterial wall: Evidence that plaque cholesterol may be derived from post-prandial lipoproteins. Eur. J. Clin. Invest. 28: 497–503 (1998)CrossRefGoogle Scholar
  33. 33.
    Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors and 12 year cardio-vascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care 16: 434–444 (1993)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2012

Authors and Affiliations

  • Ha-Neul Choi
    • 1
  • Min-Jung Kang
    • 2
  • Soo-Mi Jeong
    • 1
  • Min Jeong Seo
    • 3
    • 4
  • Byoung Won Kang
    • 4
  • Yong Kee Jeong
    • 4
  • Jung-In Kim
    • 1
    Email author
  1. 1.Department of Smart Food and Drugs, School of Food and Life ScienceInje UniversityGimhae, GyeongnamKorea
  2. 2.Graduate School of EducationChangwon National UniversityChangwon, GyeongnamKorea
  3. 3.Department of BiotechnologyDong-A UniversityBusanKorea
  4. 4.Medi-Farm Industrialization Research CenterDong-A UniversityBusanKorea

Personalised recommendations