Food Science and Biotechnology

, Volume 21, Issue 1, pp 101–106 | Cite as

Rapid detection of food-borne Listeria monocytogenes by real-time quantitative loop-mediated isothermal amplification

  • Xiaoxiao Shan
  • Yaoqi Zhang
  • Zhigang Zhang
  • Miaorui Chen
  • Yongyu Su
  • Yingna Yuan
  • M. Jahangir Alam
  • He Yan
  • Lei ShiEmail author
Research Article


The purpose of this study was to develop a real-time quantitative loop-mediated isothermal amplication (LAMP) method for the rapid, sensitive, and convenient detection of Listeria monocytogenes in food. The LAMP method could amplify the hlyA gene of L. monocytogenes successfully at 63°C with a loopamp real-time turbidimeter. The detection limits of the LAMP for hlyA gene were 6 colony forming units (CFU)/tube. A standard curve was generated for L. monocytogenes LAMP by plotting the graph based different log CFU values of L. monocytogenes and time of positivity through real-time monitoring of the amplication. Then, the LAMP method was employed to test 94 retail food samples effectively. Sensitivity in detection of L. monocytogenes by the LAMP was higher than that of PCR and none of the conventional methodpositive samples was missed by the LAMP method.


Listeria monocytogenes loop-mediated isothermal amplication (LAMP) real-time turbidimeter quantitative 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berrada H, Soriano J, Pico Y, Maes J. Quantification of Listeria monocytogenes in salads by real time quantitative PCR. Int. J. Food Microbiol. 107: 202–206 (2006)CrossRefGoogle Scholar
  2. 2.
    Hudson J, Lake R, Savill M, Scholes P, McCormick R. Rapid detection of Listeria monocytogenes in ham samples using immunomagnetic separation followed by polymerase chain reaction. J. Appl. Microbiol. 90: 614–621 (2001)CrossRefGoogle Scholar
  3. 3.
    Anon. Microbiology of food and animal feeding stuffs. Horizontal method for the detection and enumeration of Listeria monocytogenes. Part 1: Detection method (EN ISO 11290-1:1996/A1:2004). International Organization for Standardization, Geneva, Switzerland (2004)Google Scholar
  4. 4.
    Aparecida de Oliveira M, Abeid Ribeiro EG, Morato Bergamini AM, Pereira De Martinis EC. Quantification of Listeria monocytogenes in minimally processed leafy vegetables using a combined method based on enrichment and 16S rRNA real-time PCR. Food Microbiol. 27: 19–23 (2010)CrossRefGoogle Scholar
  5. 5.
    Hein I, Klein D, Lehner A, Bubert A, Brandl E, Wagner M. Detection and quantification of the iap gene of Listeria monocytogenes and Listeria innocua by a new real-time quantitative PCR assay. Res. Microbiol. 152: 37–46 (2001)CrossRefGoogle Scholar
  6. 6.
    O’Grady J, Sedano-Balbás S, Maher M, Smith T, Barry T. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiol. 25: 75–84 (2008)CrossRefGoogle Scholar
  7. 7.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: e63 (2000)CrossRefGoogle Scholar
  8. 8.
    Yukiko H, Manabu Y, Tadashi K, Masanari I. Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiol. Lett. 254: 155–161 (2005)Google Scholar
  9. 9.
    FSAI. The control and management of Listeria monocytogenes contamination of food (ISBN 1-904465-29-3). Food Safety Authority of Ireland, Dublin, Ireland (2005)Google Scholar
  10. 10.
    Anonymous. Commission Regulation (EC) No 2073/2005. The Commission of the European Communities, Brussels, Luxemburg (2005)Google Scholar
  11. 11.
    Siyi C, Beilei G. Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC Microbiol. 10: 41 (2010)CrossRefGoogle Scholar
  12. 12.
    Nogva HK, Rudi K, Naterstad K, Holck A, Lillehaug D. Application of 5′-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl. Environ. Microb. 66: 4266–4271 (2000)CrossRefGoogle Scholar
  13. 13.
    Eiken Chemical Co., Ltd. PrimerExplorer V4 Software. Available from: Accessed Mar. 16, 2011.
  14. 14.
    Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loopmediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Bioph. Res. Co. 289: 150–154 (2001)CrossRefGoogle Scholar
  15. 15.
    Parida M, Santhosh S, Dash P, Tripathi N, Lakshmi V, Mamidi N, Shrivastva A, Gupta N, Saxena P, Babu JP. Rapid and real-time detection of Chikungunya virus by reverse transcription loopmediated isothermal amplification assay. J. Clin. Microbiol. 45: 351–357 (2007)CrossRefGoogle Scholar
  16. 16.
    Wang L, Li L, Alam MJ, Geng Y, Li Z, Yamasaki S, Shi L. Loopmediated isothermal amplification method for rapid detection of the toxic dinoflagellate Alexandrium, which causes algal blooms and poisoning of shellfish. FEMS Microbiol. Lett. 282: 15–21 (2008)CrossRefGoogle Scholar
  17. 17.
    Hoffman AD, Gall KL, Norton DM, Wiedmann M. Listeria monocytogenes contamination patterns for the smoked fish processing environment and for raw fish. J. Food Protect. 66: 52–60 (2003)Google Scholar
  18. 18.
    Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 118: 132–138 (2007)CrossRefGoogle Scholar
  19. 19.
    Maeda H, Kokeguchi S, Fujimoto C, Tanimoto I, Yoshizumi W, Nishimura F, Takashiba S. Detection of periodontal pathogen Porphyromonas gingivalis by loopmediated isothermal amplification method. FEMS Immunol. Med. Mic. 43: 233–239 (2005)CrossRefGoogle Scholar
  20. 20.
    Wang L, Shi L, Alam MJ, Geng Y, Li L. Specific and rapid detection of foodborne Salmonella by loop-mediated isothermal amplification method. Food Res. Int. 41: 69–74 (2008)CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Shan X, Shi L, Lu X, Tang S, Wang Y, Li Y, Alam MJ, Yan H. Development of a fimY-based loop-mediated isothermal amplification assay for detection of Salmonella in food. Food Res. Int. doi:10.1015/j.foodres.2011.02.015 (2011)Google Scholar
  22. 22.
    Nagamine K, Hase T, Notomi T. Accelerated reaction by loopmediated isothermal amplification using loop primers. Mol. Cell. Probe. 16: 223–229 (2002)CrossRefGoogle Scholar
  23. 23.
    Aoi Y, Hosogai M, Tsuneda S. Real-time quantitative LAMP (loopmediated isothermal amplification of DNA) as a simple method for monitoring ammonia-oxidizing bacteria. J. Biotechnol. 125: 484–491 (2006)CrossRefGoogle Scholar
  24. 24.
    Rudi K, Naterstad K, Drømtorp SM, Holo H. Detection of viable and dead Listeria monocytogenes on gouda-like cheeses by realtime PCR. Lett. Appl. Microbiol. 40: 301–306 (2005)CrossRefGoogle Scholar
  25. 25.
    Amagliani G, Giammarini C, Omicciolo E, Brandi G, Magnani M. Detection of Listeria monocytogenes using a commercial PCR kit and different DNAextraction methods. Food Control 18: 1137–1142 (2007)CrossRefGoogle Scholar
  26. 26.
    De Martinis ECP, Duvall RE, Hitchins AD. Real time PCR detection of 16SrRNA genes speeds most-probable-number enumeration of foodborne Listeria monocytogenes. J. Food Protect. 70: 1650–1655 (2007)Google Scholar
  27. 27.
    O’Grady J, Ruttledge M, Sedano-Balbas S, Smith TJ, Barry T, Maher M. Rapid detection of Listeria monocytogenes in food using culture enrichment combined with real-time PCR. Food Microbiol. 26: 4–7 (2009)CrossRefGoogle Scholar
  28. 28.
    Rosmanith P, Krassnig M, Wagner M, Hein I. Detection of Listeria monocytogenes in food using a combined enrichment/real-time PCR method targeting the prfA gene. Res. Microbiol. 157: 763–771 (2006)CrossRefGoogle Scholar
  29. 29.
    Han F, Ge B. Quantitative detection of Vibrio vulnificus in raw oysters by real-time loop-mediated isothermal amplification. Int. J. Food Microbiol. 142: 60–66 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2012

Authors and Affiliations

  • Xiaoxiao Shan
    • 2
    • 3
  • Yaoqi Zhang
    • 1
    • 3
  • Zhigang Zhang
    • 3
  • Miaorui Chen
    • 3
  • Yongyu Su
    • 3
  • Yingna Yuan
    • 4
  • M. Jahangir Alam
    • 5
  • He Yan
    • 1
    • 3
  • Lei Shi
    • 1
    • 3
    Email author
  1. 1.College of Light Industry and Food SciencesSouth China University of TechnologyGuangzhouChina
  2. 2.School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouChina
  3. 3.State Key Laboratory of Food Safety Technology for Meat ProductsXiamen Yinxiang Group Co., Ltd.XiamenChina
  4. 4.College of Landscape and ArtJiangxi Agricultural UniversityNanchang, JiangxiChina
  5. 5.Texas Commission on Environmental QualityHoustonUSA

Personalised recommendations