Food Science and Biotechnology

, Volume 21, Issue 1, pp 59–67 | Cite as

Antioxidant, anti-inflammatory activity, and phytochemical constituents of ficus (Ficus amplissima Smith) bark

  • Rajan Murugan
  • Karuppusamy Arunachalam
  • Thangaraj ParimelazhaganEmail author
Research Article


In the present investigation, phenolics (36.6 g gallic acid equivalents (GAE)/100 g extract), tannin (21.6 g GAE/100 g extract), and flavonoid content (67.5 g rutin equivalents/100 g extract) were found to be highest in acetone extract. Ficus (Ficus amplissima) acetone extract showed maximum antioxidant activity in phosphomolybdenum (958.8 mg ascorbic acid equivalents/g extract), DPPH (1.6 μg/mL), ferric reducing antioxidant power (2,993 mmol Fe (II)/g extract), and metal chelating (39.7 mg EDTA equivalents/g extract) assays. In anti-inflammatory study, 400 mg/kg acetone extract showed maximum reduction in the paw volume compare to indomethacin. GC-MS analysis indicated that bark contain rich source of non-polar compounds like Lup-20(29)-en-3-yl acetate (33.04%). Hence, Ficus can be valuable source for antioxidant and anti-inflammatory and seemed to be applicable in medicine.


Ficus amplissima antioxidant anti-inflammatory Lup-20(29)-en-3-yl acetate lupeol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol. Rev. 53: 135–159 (2001)Google Scholar
  2. 2.
    Kim MJ, Im KR, Yoon K-S. Anti-inflammatory effects of YeongyoSeungma-tang. J. Ethnopharmacol. 126: 377–381 (2009)CrossRefGoogle Scholar
  3. 3.
    Sautebin L. Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterpia 71: 48–57 (2000)CrossRefGoogle Scholar
  4. 4.
    Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 143: 109–142 (1999)Google Scholar
  5. 5.
    Mitchell RN, Cotran RS. Robinsons Basic Pathology. (ed) 7. Harcourt Pvt., Ltd., New Delhi, India. pp. 33–42 (2000)Google Scholar
  6. 6.
    Pulliah T. Biodiversity in India. Vol. 1. Daya Publishing House, Delhi, India. p.114 (2002)Google Scholar
  7. 7.
    Singh MP, Himadri P. Medicinal Herbs with Their Formulations. Vol 2. Daya Publishing House, Delhi, India. p. 405 (2005)Google Scholar
  8. 8.
    Siddhuraju P, Becker K. Studies on antioxidant activities of Mucuna seed (Mucuna pruriens var. utilis) extracts and certain non-protein amino/imino acids through in vitro models. J. Agr. Food Chem. 51: 2144–2155 (2003)CrossRefGoogle Scholar
  9. 9.
    Siddhuraju P, Manian S. The antioxidant and free radical scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chem. 105: 950–958 (2007)CrossRefGoogle Scholar
  10. 10.
    Zhishen J, Mengecheng T, Jianming W. The determination of flavonoid contents on mulberry and their scavenging effects on superoxide radical. Food Chem. 64: 555–559 (1999)CrossRefGoogle Scholar
  11. 11.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)CrossRefGoogle Scholar
  12. 12.
    Prieto P, Pineda M, Aguilar M. Spectrophotometric quantity of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 269: 337–341 (1999)CrossRefGoogle Scholar
  13. 13.
    Blois MS. Antioxidant’s determination by the use of a stable free radical. Nature 4617: 1199–1200 (1958)CrossRefGoogle Scholar
  14. 14.
    Pulido R, Bravo L, Sauro-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agr. Food Chem. 48: 3396–3402 (2000)CrossRefGoogle Scholar
  15. 15.
    Dinnis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315: 161–169 (1994)CrossRefGoogle Scholar
  16. 16.
    Ecobichon DJ. The Basis of Toxicology Testing. CRC Press, New York, NY, USA. pp. 43–86 (1999)Google Scholar
  17. 17.
    Winter CA, Risely EA, Nus GN. Carrageenan induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. P. Soc. Exp. Biol. Med. 111: 544–547 (1962)Google Scholar
  18. 18.
    Kulkarni SK, Dandiya PC. Influence of intraventricular administration of norepinephrine, dopamine, and 5-hydroxytryptamine on motor activity of rats. Ind. J. Med. Res. 63: 462–468 (1975)Google Scholar
  19. 19.
    Osawa T. Novel natural antioxidants for utilization in food and biological system. pp. 241–251. In: Postharvest Biochemistry of Plant Food Materials in the Tropics. Uritani I, Garcia VV, Mendoza EM (eds). Japan Scientist Societies Press, Tokyo, Japan (1994)Google Scholar
  20. 20.
    Raj KJ, Shalini K. Flavonoids — A review of biological activities. Indian Drugs 36: 668–676 (1999)Google Scholar
  21. 21.
    Badami S, Gupta MK, Suresh B. Antioxidant activity of the ethanolic extract of Stiga orobanchioides. J. Ethnopharmacol. 85: 227–230 (2003)CrossRefGoogle Scholar
  22. 22.
    Ao C, Li A, Elzaawely AA, Xuan TD, Tawata S. Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract. Food Control 19: 940–948 (2008)CrossRefGoogle Scholar
  23. 23.
    Awika JM, Rooney LW, Wu, XL, Prior RL, Cisneroszevallos J. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agr. Food. Chem. 51: 6657–6662 (2003)CrossRefGoogle Scholar
  24. 24.
    Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agr. Food Chem. 40: 801–805 (1998)Google Scholar
  25. 25.
    Manian R, Anusuya N, Siddhuraj P, Manian S. The antioxidant activity and free radical scavenging potential of two different solvent extracts of Cammelia sinensis (L.) O. Kuntz, F. bengalensis L., and F. racemosa L. Food Chem. 107: 1000–1007 (2008)CrossRefGoogle Scholar
  26. 26.
    Jao CH, Ko WC. 1, 1 Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolysaes from tuna cooking juice. J. Fish Sci. 68: 430–435 (2002)CrossRefGoogle Scholar
  27. 27.
    Loo AY, Jain K, Darah I. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem. 107: 1151–1160 (2008)CrossRefGoogle Scholar
  28. 28.
    Falodun A, Siraj R, Choudhary MI. GC-MS analysis of insecticidal leaf essential oil of Pyrenacantha staudtii Hutch and Dalz (Icacinaceae). Trop. J. Pharm. Res. 8: 139–143 (2009)CrossRefGoogle Scholar
  29. 29.
    Jones PJ. Clinical nutrition: 7. Functional foods-more than just nutrition. Can. Med. Assoc. J. 166: 1555–1563 (2002)Google Scholar
  30. 30.
    Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 285: 109–115 (2009)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2012

Authors and Affiliations

  • Rajan Murugan
    • 1
  • Karuppusamy Arunachalam
    • 1
  • Thangaraj Parimelazhagan
    • 1
    Email author
  1. 1.Bioprospecting Laboratory, Department of BotanyBharathiar UniversityCoimbatoreIndia

Personalised recommendations