Food Science and Biotechnology

, Volume 21, Issue 1, pp 19–26 | Cite as

Roasting enhances antioxidant effect of bitter melon (Momordica charantia L.) increasing in flavan-3-ol and phenolic acid contents

  • Jine Shang Choi
  • Hyun Young Kim
  • Weon Taek Seo
  • Jin Hwan Lee
  • Kye Man ChoEmail author
Research Article


Bitter melon (BM, Momordica charantia L) has various biological functions including antidiabetic, anticancer, anti-inflammatory, antiviral, and antioxidant activities. In this study, the antioxidant effects of BM fruits, leaves, stems, and roots after roasting using DPPH, ABTS, reducing power, and ferric reducing/antioxidant power (FRAP) assays were compared. The roasted BM exhibited significantly higher antioxidant activity than unroasted BM in the test methods used. Particularly, the roasted BM roots showed the highest antioxidant activity compared to any other extracts. Antioxidant compounds including flavan-3-ols and phenolic acids increased, whereas flavanols decreased in the BM following roast processing. Moreover, the total phenolic contents and flavan-3-ol and phenolic acid contents were markedly increased, leading to a general increase in antioxidant activities after roasting. These results suggest that the roasting BM extracts could be used as a potential source of natural antioxidants in certain food and medicinal applications.


bitter melon (BM, Momordica charantia L) roasting flavan-3-ol phenolic aicd antioxidant activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 239: 70–76 (1996)CrossRefGoogle Scholar
  2. 2.
    Jeong CH, Choi GN, Kim JH, Kwak JH, Kim DO, Kim YJ, Heo HJ. Antioxidant activities from the aerial parts of Platycodon grandiflorum. Food Chem. 118: 278–282 (2010)CrossRefGoogle Scholar
  3. 3.
    Xu ML, Wang L, Hu JH, Lee SK, Wang MH. Antioxdiant activities and related polyphenolic constituents of the methanol extract fractions from Broussonetia papyrifera stem bark and wood. Food Sci. Biotechnol. 19: 677–682 (2010)CrossRefGoogle Scholar
  4. 4.
    Liu CH, Yen MH, Tsang SF, Gan KH, Hsu HY, Lin CN. Antioxidant triterpenoids from the stems of Momordica charantia. Food Chem. 118: 751–756 (2010)CrossRefGoogle Scholar
  5. 5.
    Wu SJ, Ng LT. Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviate Ser.) in Taiwan. LWT-Food Sci. Technol. 41: 323–330 (2008)CrossRefGoogle Scholar
  6. 6.
    Winston JC. Health-promoting properties of common herbs. Am. J. Clin. Nutr. 70: 491–499 (1999)Google Scholar
  7. 7.
    Budrat P, Shotipruk A. Enhanced recovery of phenolic compounds from bitter melon (Momordica charantia) by subcritical water extraction. Sep. Purif. Technol. 66: 125–129 (2009)CrossRefGoogle Scholar
  8. 8.
    Li D, Li X, Ding X. Composition and antioxidative properties of the flavonoid-rich fractions from tartary buckwheat grains. Food Sci. Biotechnol. 19: 711–716 (2010)CrossRefGoogle Scholar
  9. 9.
    Kubola J, Siriamornpu S. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem, and fruit fraction extracts in vitro. Food Chem. 110: 881–890 (2008)CrossRefGoogle Scholar
  10. 10.
    Kim HY, Lee JM, Yokozawa T, Sakata K, Lee SH. Protective activity of flavonoid and flavonoid glycosides against glucose-mediated protein damage. Food Chem. 126: 892–895 (2011)CrossRefGoogle Scholar
  11. 11.
    Habicht SD, Kind V, Rudloff S, Borsch C, Mueller AS, Pallauf J, Yang RY, Karwinkel MB. Quantification of antidiabetic extracts and compounds in bitter gourd varieties. Food Chem. 126: 172–176 (2011)CrossRefGoogle Scholar
  12. 12.
    Lin JY, Tang CY. Strawberry, loquat, mulberry, and bitter melon juices exhibit prophylatic effects on LPS-induced inflammation using murine peritoneal macrophages. Food Chem. 107: 1587–1596 (2008)CrossRefGoogle Scholar
  13. 13.
    Parr AJ, Bolwell GP. Phenols in plant and in man. The potential for possible nutritional enhancement of this diet by modifying the phenols content or profile. J. Sci. Food Agr. 80: 985–1012 (2000)CrossRefGoogle Scholar
  14. 14.
    Dewanto V, Wu X, Liu RH. Processed sweet corn has higher antioxidant activity. J. Agr. Food Chem. 50: 4959–4964 (2002)CrossRefGoogle Scholar
  15. 15.
    Jaramillo-Flores ME, Gonzalez-Cruz L, Cornejo-Mazon M, Dorantes-Alvarez L, Gutierrez-Lopez GF, Hernadez-Sanchez H. Effect of thermal treatment on the antioxidant activity and content of carotenoids and phenolic compounds of cactus pear cladodes (Opuntia ficus-indica). Food Sci. Technol. Int. 9: 271–278 (2003)CrossRefGoogle Scholar
  16. 16.
    Nicoli MC, Anese M, Manzocco L, Lerici CR. Antioxidant properties of coffee brews in relation to the roasting degree. LWT-Food Sci. Technol. 30: 292–297 (1997)CrossRefGoogle Scholar
  17. 17.
    Oliviero T, Capuano E, Cammerer B, Fogliano V. Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems. J. Agr. Food Chem. 57: 147–152 (2009)CrossRefGoogle Scholar
  18. 18.
    Basch E, Gabardi S, Ulbricht C. Bitter melon (Mormordica charantia): A review of efficacy and safety. Am. J. Health-Syst. Ph. 60: 356–359 (2003)Google Scholar
  19. 19.
    Pitipanapong J, Chitprasert S, Goto M, Jiratchariyakul W, Sasaki M, Shotipruk A. New approach for extraction of charantin from Momordica charantia with pressurized liquid extraction. Sep. Purif. Technol. 52: 416–422 (2007)CrossRefGoogle Scholar
  20. 20.
    Cho KM, Hong SY, Math RK, Lee JH, Kambiranda DM, Kim JM, Islam SMA, Yun MG, Cho JJ, Lim WJ, Yun HD. Biotransformation of phenolics (isoflavones, flavanols, and phenolic acid) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 114: 413–419 (2009)CrossRefGoogle Scholar
  21. 21.
    Blois MS. Antioxidant determination by the use of a stable free radical. Nature 181: 1199–1200 (1958)CrossRefGoogle Scholar
  22. 22.
    Re R, Pelligrini N, Proteggente A, Pannala A, Yang M, Rice-Evans CA. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)CrossRefGoogle Scholar
  23. 23.
    Jeong CH, Kim JH, Choi GN, Kwak JH, Kim DO, Heo HJ. Protective effects of extract with phenolics from camellia (Camellia japonica) leaf against oxidative stress-induced neurotoxicity. Food Sci. Biotechnol. 19: 1347–1353 (2010)CrossRefGoogle Scholar
  24. 24.
    Sin SM, Mok SY, Lee SH, Cho KM, Cho EJ, Kim HY. Protective effect of bitter melon (Momordica charantia) against oxidative stress. Cancer Prev. Res. 16: 86–92 (2011)Google Scholar
  25. 25.
    Locatelli M, Travaglia F, Coïsson JD, Martelli A, Stévigny C, Arlorio M. Total antioxidant activity of hazelnut skim (Nocciola Piemonte PGI): Impact of different roasting conditions. Food Chem. 119: 1647–1655 (2010)CrossRefGoogle Scholar
  26. 26.
    Yang EJ, Kim SI, Hur JM, Song KS. Roasting process enhances antioxidative effect of cinnamon (Cinnamomi cortex) via increase in cinnamaldehyde content. J. Korean Soc. Appl. Biol. Chem. 52: 443–447 (2009)CrossRefGoogle Scholar
  27. 27.
    Gallegos-Infante JA, Rocha-Guzman NE, Gonzalez-Laredo RF, Pulido-Alonso J. Effect of processing on the antioxidant properites of extracts Mexican barley (Hordeum vulgare) cultivar. Food Chem. 119: 903–906 (2010)CrossRefGoogle Scholar
  28. 28.
    Saulnier L, Marto C, Elgorriaga M, Bonnin E, Thibault JF. Thermal and enzymatic treatments for the release of free ferulic acid from maize bran. Carbohyd. Polym. 45: 269–275 (2001)CrossRefGoogle Scholar
  29. 29.
    Chandrasekara N, Shahidi F. Antioxidative potential of cashew phenolics in food and biological model systems as affected by roasting. Food Chem. 129: 1388–1396 (2011)CrossRefGoogle Scholar
  30. 30.
    Kim HG, Kim GW, Oh H, Yoo SY, Kim YO, Oh MS. Influence of roasting on the antioxidant activity of small black soybean (Glycine max L. Merrill). LWT-Food Sci. Technol. 44: 992–998 (2011)CrossRefGoogle Scholar
  31. 31.
    Hayase F, Hirashima S, Okamoto G, Kato H. Scavenging of active oxygen by melanoidins. Agr. Biol. Chem. Tokyo 53: 3383–3385 (1989)CrossRefGoogle Scholar
  32. 32.
    Jeong SM, Kim SY, Kim DR, Nam KC, Ahn DU, Lee SC. Effect of seed roasting conditions on the antioxidant activity of defatted sesame meal extracts. J. Food Sci. 69: 377–381 (2004)CrossRefGoogle Scholar
  33. 33.
    Sahin H, Topuz A, Pischetsrieder M, Ozdemir F. Effect of roasting process on phenolic, antioxidant, and browning properties of carob powder. Eur. Food Res. Technol. 230: 155–161 (2009)CrossRefGoogle Scholar
  34. 34.
    Medina J, Gonzalez M, Lois S, Hedges N. Effect of molecular structure of phenolic families as hydroxycinnamic acids and catechins on their antioxidant effectiveness in minced fish muscle. J. Agr. Food Chem. 55: 3889–3895 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2012

Authors and Affiliations

  • Jine Shang Choi
    • 1
  • Hyun Young Kim
    • 1
  • Weon Taek Seo
    • 1
  • Jin Hwan Lee
    • 2
  • Kye Man Cho
    • 1
    Email author
  1. 1.Department of Food ScienceGyeongnam National University of Science and TechnologyJinju, GyeongnamKorea
  2. 2.Department of Monitoring and Analysis, NAKDONG River Basin Environmental OfficeMinistry of EnvironmentChangwon, GyeongnamKorea

Personalised recommendations