Food Science and Biotechnology

, 20:1243 | Cite as

Xanthan gum production under different operational conditions by Xanthomonas axonopodis pv vesicatoria isolated from pepper plant

  • Mustafa Mirik
  • Ahmet Sukru Demirci
  • Tuncay Gumus
  • Muhammet Arici
Research Article

Abstract

The influence of operational conditions (pH, stirrer speed, and temperature) used in the process of xanthan production by Xanthomonas axonopodis pv vesicatoria (XCVA3-1) isolated from pepper plant were evaluated through yield of xanthan and compared with control strain Xanthomonas campestris NRRL-B 1459. Different conditions used during the fermentation affected the xanthan production. In this study the best combination of yield was obtained, reaching 1.325 g/100 mL with the use of pH 7.0, 30°C, and 250 rpm during fermentation. Increased yield of xanthan production can be obtained at high agitation values, with the maximum at 400 rpm. Higher yields of gum production can be obtained at 30°C and the optimum pH was found 7.0. This results were similar for the X. campestris NRRL-B 1459.

Keywords

xanthan gum Xanthomonas axonopodis pv vesicatoria optimization Xanthomonas campestris NRRL-B 1459 yield 

References

  1. 1.
    Sutherland IW. Extracellular polysaccharide. Vol. 3, pp. 531–575. In: Biotechnology. Dellweg H (ed). Verlag Chemie, Weinheim, Germany (1983)Google Scholar
  2. 2.
    Garcia-Ochoa F, Santos VE, Casas JA, Gomez E. Xanthan gum: Production, recovery, and properties. Biotechnol Adv. 18: 1–31 (2000)CrossRefGoogle Scholar
  3. 3.
    Margaritis A, Zajic JE. Biotechnology review: Mixing, mass transfer, and scale-up of polysaccharide fermentation. Biotech. Bioeng. 20: 939–1001 (1978)CrossRefGoogle Scholar
  4. 4.
    Rinaudo M, Milas M. Polyelectrolite behaviour of a bacterial polysaccharide from Xanthomonas campestris: Comparison with CMC. Biopolymers17: 2663–2678 (1978)CrossRefGoogle Scholar
  5. 5.
    Rosalan S, England R. Review of xanthan gum production from unmodified starches by Xantomonas campestris sp. Enzyme Microb. Tech. 39: 197–207 (2006)CrossRefGoogle Scholar
  6. 6.
    Smith IH, Pace GW. Recovery of microbial polysaccharides. J. Chem.Technol. Biot. 32: 119–129 (1982)Google Scholar
  7. 7.
    Rodriguez H, Aguilar L. Detection of Xanthomonas campestris mutants with increased xanthan production. J. Ind. Microbiol. Biochem. 18: 232–234 (1997)CrossRefGoogle Scholar
  8. 8.
    Moreira AS, Vendruscolo JLS, Gil-Turnes C, Vendruscolo CT. Screening among 18 novel strains of Xanthomonas campestris pv pruni. Food Hydrocolloid. 15: 469–474 (2001)CrossRefGoogle Scholar
  9. 9.
    Garcia-Ochoa F, Santos VE, Fritsch AP. Nutritional study of Xanthomonas campestris in xanthan gum production by factorial design of experiments. Enzyme Microb. Tech. 14: 991–996 (1992)CrossRefGoogle Scholar
  10. 10.
    Chaitali M, Kapadi M, Suraishkumar GK, Gudi RD. Productivity improvement in xanthan gum fermentation using multiple substrate optimization. Biotechnol. Progr. 19: 1190–1198 (2003)CrossRefGoogle Scholar
  11. 11.
    Amanullah A, Satti S, Nienow AW. Enhancing xanthan fermentations by different modes of glucose feding. Biotechnol. Progr. 14: 265–269 (1998)CrossRefGoogle Scholar
  12. 12.
    Letisse F, Chevallereau P, Simon JL, Lindley ND. Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources. Appl. Microbiol. Biot. 55: 417–422 (2001)CrossRefGoogle Scholar
  13. 13.
    Liakopoulou-Kyriakides M, Tzanakakis ES, Kiparissidis C, Ekateriniadou LV, Kyriakidis DA. Kinetics of xanthan gum production from whey by constructed strains of Xanthomonas campestris in batch fermentations. Chem. Eng. Technol. 20: 354–360 (1997)CrossRefGoogle Scholar
  14. 14.
    Liakopoulou-Kyriakides M, Psomas SK, Kyriakidis DA. Xanthan gum production by Xanthomonas campestris w.t. fermentation from chestnut extract. Appl. Biochem. Biotech. 82: 175–183 (1999)CrossRefGoogle Scholar
  15. 15.
    Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M, Kyriakidis DA, Skaracis GN. Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem. 39: 249–256 (2003)CrossRefGoogle Scholar
  16. 16.
    Papi RM, Ekateriniadou LV, Beletsiotis E, Typas MA, Kyriakidis DA. Xanthan gum and ethanol production by Xanthomonas campestris and Zymomonas mobilis from peach pulp. Biotechnol. Lett. 21: 39–43 (1999)CrossRefGoogle Scholar
  17. 17.
    Lopez MJ, Moreno J, Ramos AC. Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Water Res. 35: 1828–1830 (2001)CrossRefGoogle Scholar
  18. 18.
    Lopez MJ, Vargas-Garcia MC, Suarez-Estrella F, Moreno J. Properties of xanthan obtained from agricultural wastes acid hydrolysates. J. Food Eng. 63: 111–115 (2004)CrossRefGoogle Scholar
  19. 19.
    Yoo SD, Harcum SW. Xanthan gum production from waste sugar beet pulp. Bioresource Technol. 70: 105–109 (1999)CrossRefGoogle Scholar
  20. 20.
    Shu CH, Yang ST. Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris. Biotechnol. Bioeng. 35: 454–468 (1990)CrossRefGoogle Scholar
  21. 21.
    Shu CH, Yang ST. Kinetics and modeling of temperature effects on batch xanthan gum fermentation. Biotechnol. Bioeng. 37: 567–574 (1991)CrossRefGoogle Scholar
  22. 22.
    Esgalhado ME, Roseiro JC, Collaco MTA. Interactive effects of pH and temperature on cell growth and polymer production by Xanthomonas campestris. Process Biochem. 30: 667–671 (1995)Google Scholar
  23. 23.
    Cacik F, Dondo RG, Marques D. Optimal control of a batch bioreactor for the production of xanthan gum. Comput. Chem. Eng. 25: 409–418 (2001)CrossRefGoogle Scholar
  24. 24.
    Peters HU, Herbst H, Hesselink PGM, Lunsdorf H, Schumpe A, Deckwer WD. The influence of agitation rate on xanthan production by Xanthomonas campestris. Biotechnol. Bioeng. 34: 1393–1397 (1989)CrossRefGoogle Scholar
  25. 25.
    Amanullah A, Tuttiett B, Nienow AW. Agitator speed and dissolved oxygen effects in xanthan fermentations. Biotechnol. Bioeng. 57: 198–210 (1998)CrossRefGoogle Scholar
  26. 26.
    Amanullah A, Serrano LC, Castro B, Galindo E, Nienow AW. The influence of impeller type in pilot scale xanthan fermentations. Biotechnol. Bioeng. 57: 95–108 (1998)CrossRefGoogle Scholar
  27. 27.
    Sanchez A, Martinez A, Torres L, Galindo E. Power consumption of 3 impeller combinations in mixing xanthan fermentation broths. Process Biochem. 27: 351–365 (1992)CrossRefGoogle Scholar
  28. 28.
    Garcia-Ochoa F, Gomez E. Mass transfer coefficient in stirred reactors for xanthan gum solutions. J. Biochem. Eng. 1: 1–10 (1998)CrossRefGoogle Scholar
  29. 29.
    Sriram G, Rao YM, Suresh AK, Sureshkumar GK. Oxygen supply without gas-liquid film resistance to Xanthomonas campestris cultivation. Biotechnol. Bioeng. 59: 714–723 (1998)CrossRefGoogle Scholar
  30. 30.
    Garcia-Ochoa F, Gomez EC, Santos VE. Oxygen transfer and uptake rates during xanthan gum production. Enzyme Microb. Tech. 27: 680–690 (2000)CrossRefGoogle Scholar
  31. 31.
    Casas JA, Santos VE, García-Ochoa F. Xanthan gum production under several operational conditions: Molecular structure and rheological properties. Enzyme Microb. Tech. 26: 282–291 (2000)CrossRefGoogle Scholar
  32. 32.
    Papagianni M, Psomas SK, Batsilas L, Paras SV, Kyriakidis DA, Liakopoulou-Kyriakides M. Xanthan production by Xanthomonas campestris in batch cultures. Process Biochem. 37: 73–80 (2001)CrossRefGoogle Scholar
  33. 33.
    Mirik M. Identification of Xanthomonas axonopodis pv vesicatoria, causal agent of bacterial spot disease of pepper, and studies on biological control of the disease by plant growth promoting rhizobacteria. PhD thesis, Institute of Natural and Applied Sciences University of Cukurova, Turkey (2005)Google Scholar
  34. 34.
    Kawahara H, Obata H. Production of xanthan gum and icenucleating material from whey by Xanthomonas campestris pv. Translucens. Appl. Microbiol. Biot. 49: 353–358 (1998)CrossRefGoogle Scholar
  35. 35.
    Stredansky M, Conti E. Xanthan production by solid state fermentation. Process Biochem. 34: 581–587 (1999)CrossRefGoogle Scholar
  36. 36.
    Borges CD, Paula RCM, Feitosa JPA, Vendruscolo CT. The influence of thermal treatment and operational conditions on xanthan produced by X. arboricola pv pruni strain 106. Carbohyd. Polym. 75: 262–268 (2009)CrossRefGoogle Scholar
  37. 37.
    Mesomo M, Silva MF, Boni G, Padilha FF, Mazutti M, Mossi A, de Oliveira D, Cansian RL, Di Luccio M, Treichel H. Xanthan gum produced by Xanthomonas campestris from cheese whey: Production optimisation and rheological characterisation. J. Sci. Food Agr. 89: 2440–2445 (2009)CrossRefGoogle Scholar
  38. 38.
    De Vuyst L, Vermeire A. Use of industrial medium components for xanthan production by Xanthomonas campestris NRRL-B-1459. Appl. Microbiol. Biot. 42: 187–191 (1994)Google Scholar
  39. 39.
    Gupte MD, Kamat MY. Isolation of wild Xanthomonas strains from agricultural produce, their characterization, and potential related to polysaccharide production. Folia Microbiol. 42: 621–628 (1997)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2011

Authors and Affiliations

  • Mustafa Mirik
    • 2
  • Ahmet Sukru Demirci
    • 1
  • Tuncay Gumus
    • 1
    • 2
  • Muhammet Arici
    • 1
  1. 1.Department of Food Engineering, Agriculture FacultyNamik Kemal UniversityTekirdagTurkey
  2. 2.Department of Plant Protection, Agriculture FacultyNamik Kemal UniversityTekirdagTurkey

Personalised recommendations