Advertisement

Food Science and Biotechnology

, Volume 20, Issue 2, pp 543–548 | Cite as

Antimicrobial and antioxidative effects of onion peel extracted by the subcritical water

  • Kyoung Ah Lee
  • Kee-Tae Kim
  • Seung-Yeol Nah
  • Myong-Soo Chung
  • SangWoo Cho
  • Hyun-Dong PaikEmail author
Research Note

Abstract

The objective of this study was to evaluate the antimicrobial and antioxidative effects of the onion peels extract prepared via the subcritical water extraction (SWE) method. First, the number of cells treated with the extract was reduced by 0.7–1.1 log CFU/mL compared with the control. The SWE extract showed 76.08% scavenging activity and it was more effective than butylated hydroxytoluene (BHT) at 61.3 ppm in lipid peroxidation inhibitory effects. In addition, the antioxidative effect of SWE extract measured via the ferric thiocyanate (FTC) method was 2-fold that of BHT. The results of this study suggest that the onion peels extract prepared via the SWE method may have potential alternative antimicrobial and antioxidative effects as functional substances.

Keywords

subcritical water extraction quercetin onion peel antimicrobial effect antioxidative effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bang W, Hanson DJ, Drake MA. Effect of salt and sodium nitrite on growth and enterotoxin production of Staphylococcus aureus during the production of air-dried fresh pork sausage. J. Food Protect. 71: 191–195 (2008)Google Scholar
  2. 2.
    Eugene BK, Brian BA. Methicillin-resistant Staphylococcus aureus and athletes. J. Am. Acad. Dermatol. 59: 494–502 (2008)CrossRefGoogle Scholar
  3. 3.
    Mohammad RF, Gholamreza A, Mohammad MAA. Antimicrobial activities of Iranian sumac and avishane shirazi (Zataria multiXora) against some food-borne bacteria. Food Control 18: 646–649 (2007)CrossRefGoogle Scholar
  4. 4.
    Son DJ, Lee SE, Park BS. Inhibitory effects of naturally occurring flavonoids on a human intestinal bacterium, Clostridium botulinum. Food Sci. Biotechnol. 12: 180–182 (2003)Google Scholar
  5. 5.
    Buxiang S, Fukuhara M. Effects of co-administration of butylated hydroxytoluene, butylated hydroxyanisole, and flavonoid on the activation of mutagens and drug-metabolizing enzymes in mice. Toxicology 122: 61–72 (1997)CrossRefGoogle Scholar
  6. 6.
    Pokorny J. Natural antioxidant for food use. Trends Food Sci. Tech. 9: 223–227 (1991)CrossRefGoogle Scholar
  7. 7.
    Larson RA. The antioxidants of higher plants. Phytochemistry 27: 969–978 (1988)CrossRefGoogle Scholar
  8. 8.
    Duthie G, Crozier A. Plant-derived phenolic antioxidants. Curr. Opin. Lipidol. 11: 43–47 (2000)CrossRefGoogle Scholar
  9. 9.
    Hertog MGL, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovc S, Pekkarinen M, Simics BS, Toshima H, Feskens E, Hollman PCH, Katan MB. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 155: 381–386 (1995)CrossRefGoogle Scholar
  10. 10.
    Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland: A cohort study. Brit. Med. J. 312: 478–481(1996)Google Scholar
  11. 11.
    Bonaccorsi P, Caristi C, Gargiulli C, Leuzzi U. Flavonol glucosides in Allium species: A comparative study by means of HPLC-DAD-ESI-MS-MS. Food Chem. 107: 1668–1673 (2008)Google Scholar
  12. 12.
    Ewald C, Fjelkner-Modig S, Johansson K, Sjöholm I, Akesson B. Effect of processing on major flavonoids in processed onions, green beans, and peas. Food Chem. 64: 231–235 (1999)CrossRefGoogle Scholar
  13. 13.
    Nemeth K, Plumb GW, Berrin JG, Juge N, Jacob R, Naim HY. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 42: 29–42 (2003)CrossRefGoogle Scholar
  14. 14.
    Sesink ALA, O’Leary KA, Hollman PCH. Quercetin glucuronides but not glucosides are present in human plasma after consumption of quercetin-3-glucoside or quercetin-4′-glucoside. J. Nutr. 131: 1938–1941 (2001)Google Scholar
  15. 15.
    Slimestad R, Fossen T, Vagen IM. Onions: A source of unique dietary flavonoids. J. Agr. Food Chem. 55: 10067–10080 (2007)CrossRefGoogle Scholar
  16. 16.
    Rodriguez-Meizoso I, Marin FR, Herrero M, Senorans FJ, Reglero G, Cifuentes A, Ibanez E. Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. J. Pharm. Biomed. Anal. 41: 1560–1565 (2006)CrossRefGoogle Scholar
  17. 17.
    Basile A, Jimenez-Carmona MM, Clifford AA. Extraction of rosemary by superheated water. J. Agr. Food Chem. 46: 5205–5209 (1998)CrossRefGoogle Scholar
  18. 18.
    Yang JH, Lin HC, Mau JL. Antioxidant properties of several commercial mushrooms. Food Chem. 77: 229–235 (2002)CrossRefGoogle Scholar
  19. 19.
    Negi P, John SK, Rao PU. Antimicrobial activity of mango sap. Eur. Food Res. Technol. 214: 327–330 (2002)CrossRefGoogle Scholar
  20. 20.
    Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199–1200 (1958)CrossRefGoogle Scholar
  21. 21.
    Antonella S, Mario S, Maria L, Daniela M, Francesco B, Francesco C. Flavonoids as antioxidant agents: Importance of their interaction with bio-membranes. Free Radical Res. 19: 481–486 (1995)Google Scholar
  22. 22.
    Osawa T, Namiki M. A novel type of antioxidant isolated from leaf wax of eucalyptus leaves. Agr. Biol. Chem. Tokyo 45: 735–740 (1981)Google Scholar
  23. 23.
    Viswanath V, Urooj A, Malleshi NG. Evaluation of antioxidant and antimicrobial properties of finger millet polyphenols (Eleusine coracana). Food Chem. 114: 340–346 (2009)CrossRefGoogle Scholar
  24. 24.
    Weiduo S, Joshua G, Rong T, Kalab M, Yang R, Yin Y. Bioassayguided purification and identification of antimicrobial components in Chinese green tea extract. J. Chromatogr. A 1125: 204–210 (2006)CrossRefGoogle Scholar
  25. 25.
    Tim CTP, Lamb AJ. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Ag. 26: 343–356 (2005)CrossRefGoogle Scholar
  26. 26.
    Kim KT, Yeo EJ, Han YS, Nah SY, Paik H-D. Antimicrobial, anti-inflammatory, and anti-oxidative effects of water and ethanol extracted Brazilian propolis. Food Sci. Biotechnol. 93: 409–415 (2004)Google Scholar
  27. 27.
    Lee JY, Hwang WI, Lim ST. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J. Ethnopharmacol. 93: 409–415 (2004)CrossRefGoogle Scholar
  28. 28.
    Keerthi S, Jerry WK, Luke RH, Jeana KM. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng. 100: 208–218 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2011

Authors and Affiliations

  • Kyoung Ah Lee
    • 1
  • Kee-Tae Kim
    • 2
  • Seung-Yeol Nah
    • 3
  • Myong-Soo Chung
    • 4
  • SangWoo Cho
    • 5
  • Hyun-Dong Paik
    • 1
    Email author
  1. 1.Division of Animal Life ScienceKonkuk UniversitySeoulKorea
  2. 2.Bio/Molecular Informatics CenterKonkuk UniversitySeoulKorea
  3. 3.Department of Physiology, College of Veterinary MedicineKonkuk UniversitySeoulKorea
  4. 4.Division of Food Science and EngineeringEwha Womans UniversitySeoulKorea
  5. 5.Seoul Perfumery Co., Ltd.SeoulKorea

Personalised recommendations