Novel quantitative method for the degree of branching in dextran

Research Note

Abstract

A novel quantitative method for the determination of degree of branching in Leuconostoc mesenteroides B-512F dextran was developed by using the combination of 3 dextran-degrading enzymes. First, Paenibacillus sp. endo-dextranase was randomly degraded B-512F dextran into linear or branched isomalto-oligosaccharides with various degree of polymerization (2–8). Second, Streptococcus mutans dextran glucosidase hydrolyzed linear or branched isomalto-oligosaccharides into glucose and branched isomalto-penta-saccharides. Third, the branched isomaltopenta-saccharide was degraded into glucose by using Bacteroides thetaimicron α-glucosidase. The number of branching points in B-512F dextran (5.42%) was determined by the difference in the amount of glucose in the reaction digest between BTGase-PDex and DGase-PDex treatments.

Keywords

dextran endo-dextranase exo-dextranase degree of branching 

References

  1. 1.
    Robyt JF. Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohyd. Chem. Bi. 51: 133–168 (1995)CrossRefGoogle Scholar
  2. 2.
    Cleve JWV, Schaefer WC, Rist CE. The structure of NRRL B-512 dextran: Methylation studies. J. Am. Soc. Chem. 78: 4435–4438 (1956)CrossRefGoogle Scholar
  3. 3.
    Henrissat B, Davies GJ. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struc. Biol. 7: 637–644 (1997)CrossRefGoogle Scholar
  4. 4.
    Saburi W, Mori H, Saito S, Okuyama M, Kimura A. Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim. Biophys. Acta 1764: 688–698 (2006)Google Scholar
  5. 5.
    Mizuno M, Tonozuka T, Suzuki S, Uotsu-Tomita R, Kamitori S, Nishikawa A, Sakano Y. Structural insights into substrate specificity and function of glucodextranase. J. Biol. Chem. 279: 10575–10583 (2004)CrossRefGoogle Scholar
  6. 6.
    Hatada Y, Hidaka Y, Nogi Y, Uchimura K, Katayama K, Li Z, Akita M, Ohta Y, Goda S, Ito H, Matsui H, Ito S, Horikoshi K. Hyperproduction of an isomalto-dextranase of an Arthrobacter sp. by a protease-deficient Bacillus subtilis: Sequencing, properties, and crystallization of the recombinant enzyme. Appl. Microbiol. Biot. 65: 583–592 (2004)CrossRefGoogle Scholar
  7. 7.
    Mizuno T, Mori H, Ito H, Matsui H, Kimura A, Chiba S. Molecular cloning of isomaltotrio-dextranase gene from Brevibacterium fuscum var. dextranlyticum strain 0407 and its expression in Escherichia coli. Biosci. Biotech. Bioch. 63: 1582–1588 (1999)CrossRefGoogle Scholar
  8. 8.
    Khalikova E, Susi P, Korpela T. Microbial dextran-hydrolyzing enzymes: Fundamentals and applications. Microbiol. Mol. Biol. R. 69: 306–325 (2005)CrossRefGoogle Scholar
  9. 9.
    Walker GJ, Pulkownik A. Degradation of dextrans by an α-1,6-glucan glucanohydrolase from Streptococcus mitis. Carbohyd. Res. 29: 1–14 (1973)CrossRefGoogle Scholar
  10. 10.
    Walker GJ, Pulkownik A. Action of α-1,6-glucan glucanohydrolase oligosaccharides derived from dextran. Carbohyd. Res. 36: 53–66 (1974)CrossRefGoogle Scholar
  11. 11.
    Kawamoto T, Oguma T. α-1,3-Branched dextran-hydrolyzing enzyme gene, and recombinant DNA α-1,3-production of branched dextranhydrolyzing enzymes. Jpn. Patent No. 2001-54382 (2001)Google Scholar
  12. 12.
    Kitamura M, Okuyama M, Tanzawa F, Mori H, Kitago Y, Watanabe N, Kimura A, Tanaka I, Yao M. Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron. J. Biol. Chem. 283: 36328–36227 (2008)CrossRefGoogle Scholar
  13. 13.
    Kim HS, Kim D, Ryu HJ, Robyt JF. Cloning and sequencing of the α-1-6 dextransucrase gene from Leuconostoc mesenteroides B-742CB. J. Micriobiol. Biotechn. 10: 559–563 (2000)Google Scholar
  14. 14.
    Kim D, Robyt JF. Dextransucrase constitutive mutants of Leuconostoc mesenteroides B-1299. Enzyme Microbial. Tech. 17: 1050–1056 (1995)CrossRefGoogle Scholar
  15. 15.
    Kim YM. Catalytic mechanism and molecular structure of dextranase having intramolecular transglycosylation activity from Paenibacillus sp. Ph.D thesis, Hokkaido University, Sapporo, Japan (2005)Google Scholar
  16. 16.
    Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)CrossRefGoogle Scholar
  17. 17.
    McFeeter RF. A manual method for reducing sugar determinations with 2,2′-bicinchoninate reagent. Anal. Biochem. 103: 302–306 (1980)CrossRefGoogle Scholar
  18. 18.
    Miwa I, Okuno J, Maeda K, Okuda G. Mutarotase effect on colorimetric determination of blood glucose with β-D-glucose oxidase. Clin. Chim. Acta 37: 538–540 (1972)CrossRefGoogle Scholar
  19. 19.
    Bounias M. N-(1-Naphthyl)ethylenediamine dihydrochloride as a new reagent for nanomole quantification of sugars on thin-layer plates by a mathematical calibration process. Anal. Biochem. 106: 291–295 (1980)CrossRefGoogle Scholar
  20. 20.
    Mukerjea R, Kim D, Robyt JF. Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohyd. Res. 292: 11–20 (1996)Google Scholar
  21. 21.
    Ryu SJ, Kim D, Ryu HJ, Chiba S, Kimura A, Kim D. Purification and partial characterization of a novel glucanhydrolase from Lipomyces starkeyi KSM 22 and its use for inhibition of insoluble glucan formation. Biosci. Biotech. Bioch. 64: 223–228 (2000)CrossRefGoogle Scholar
  22. 22.
    Lee JH, Kim GH, Kim SH, Cho DL, Kim DW, Day DF, Kim D. Treatment with glucanhyddrolase from Lipomyces starkeyi for removal of soluble polysaccharide in sugar processing. J. Micriobiol. Biotechn. 16: 983–987 (2006)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2011

Authors and Affiliations

  1. 1.School of Biological Sciences and TechnologyChonnam National UniversityGwangjuKorea
  2. 2.Eco-Friendly Biomaterial Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Jeongeup, JeonbukKorea
  3. 3.Research Faculty of AgricultureHokkaido UniversitySapporoJapan

Personalised recommendations