Food Science and Biotechnology

, Volume 20, Issue 2, pp 429–435 | Cite as

Is the anti-stress effect of vitamin C related to adrenal gland function in rat?

  • Ji Young Choi
  • Ike Campomayor dela Peña
  • Seo Young Yoon
  • Tae Sun Woo
  • Yoon Jung Choi
  • Chan Young Shin
  • Jong Hoon Ryu
  • Yong Soo Lee
  • Gu Yong Yu
  • Jae Hoon CheongEmail author
Research Article


The aim of this study was to investigate whether vitamin C influences the stress response system of the adrenal gland. Adrenalectomized (ADX) rats and non-ADX rats were administered vitamin C and were subjected to electroshock stress (ES) for 5 days. After loading the final stress, stress-related behaviors and corticosterone (CORT), vitamin C, and adrenocorticotropin-releasing hormone (ACTH) levels in the blood were measured. Vitamin C supplementation decreased CORT levels in non-ADX rats. Stress decreased the mean value of rearing frequency in both non-ADX and ADX rats, while vitamin C partially enhanced it only in non-ADX. Vitamin C supplementation decreased mean ACTH level in both groups. It also significantly decreased freezing time increased by stress. Lastly, vitamin C motivated both groups to cross over an electric field more frequently as compared to their respective control groups. These results suggest that the alleviating effect of vitamin C on stress-related rearing behavior was exerted via modulation of CORT, but its effect on freezing behavior may be attributed to corticotropin-releasing hormone (CRH) or ACTH.


vitamin C electroshock stress corticosterone behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Connor TM, O’Halloran DJ, Shanahan F. The stress response and hypothalamic-pituitary-adrenal axis: From molecule to melancholia. Q. J. Med. 93: 323–333 (2000)Google Scholar
  2. 2.
    Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 5: 617–625 (2004)CrossRefGoogle Scholar
  3. 3.
    Boyle MP, Kolber BJ, Vogt SK, Wozniak DF, Muglia LJ. Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness. J. Neurosci. 26: 1971–1978 (2006)CrossRefGoogle Scholar
  4. 4.
    Padayatta SJ. Human adrenal glands secrete vitamin C in response to adrenocorticotrophic hormone. Am. J. Clin. Nutr. 86: 145–149 (2007)Google Scholar
  5. 5.
    Linster CL, Van Schaftingen E. Vitamin C biosynthesis, recycling, and degradation in mammals. FEBS J. 274: 1–22 (2007)CrossRefGoogle Scholar
  6. 6.
    Björkhem I, Kallner A, Karlmar KE. Effects of ascorbic acid deficiency on adrenal mitochondrial hydroxylations in guinea pigs. J. Lipid Res. 19: 695–704 (1978)Google Scholar
  7. 7.
    Heybach JP, Vernikos-Danellis J. The effect of pituitary-adrenal function in the modulation of pain sensitivity in the rat. J. Physiol. 283: 331–340 (1978)Google Scholar
  8. 8.
    Davenport VA. Relation between brain and plasma electrolytes and electroshock seizure thresholds in adrenalectomized rats. Am. J. Physiol. 156: 322–327 (1949)Google Scholar
  9. 9.
    Dallman MF, Makara GB, Roberts JL, Levin N, Blum M. Corticotrope response to removal of releasing factors and corticosteroids in vivo. Endocrinology 117: 2190–2197 (1985)CrossRefGoogle Scholar
  10. 10.
    Weidenfeld J, Feldman S. Effects of adrenalectomy and corticosterone replacement on the hypothalamic-pituitary response to neural stimuli. Brain Res. 877: 73–78 (2000)CrossRefGoogle Scholar
  11. 11.
    Korte SM, Boer SF, Kloer ER, Bohus B. Anxiolytic-like effects of selective mineralocorticoid and glucocorticoid antagonists on fearenhanced behavior in the elevated plus-maze. Psychoneuroendocrino. 20: 385–394 (1995)CrossRefGoogle Scholar
  12. 12.
    Jung IK, Lee SY, Park IH, Cheong JH. Anti-stress activaties of ginsenoside RB1 is related with GABAnergic neuron. J. Appl. Pharmacol. 13: 165–173 (2005)Google Scholar
  13. 13.
    Noldus LPJJ, Spink AJ, Tegelenbosch AJ. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behav. Res. Meth. Ins. C. 33: 398–414 (2001)CrossRefGoogle Scholar
  14. 14.
    Takeuchi T, Iwanaga M, Harada E. Possible regulatory mechanism of DHA-induced anti-stress reaction in rats. Brain Res. 964: 136–143 (2003)CrossRefGoogle Scholar
  15. 15.
    Maia MA, Baby RA, Yasaka JW, Suenag E, Kaneko MT, Velasco RV. Validation of HPLC stability-indicating method for vitamin C semisolid pharmaceutical/cosmetic preparations with glutathione and sodium metabisulfite, as antioxidants. Talanta 71: 639–643 (2007)CrossRefGoogle Scholar
  16. 16.
    Brody S, Preut R, Schommer K, Schürmeyer T. A randomized controlled trial of high dose ascorbic acid for reduction of blood pressure, cortisol, and subjective responses to psychological stress. Psychopharmacology 159: 319–324 (2002)CrossRefGoogle Scholar
  17. 17.
    Nade VS, Kawale LA, Naik RA, Yadav AV. Adaptogenic effect of Morus alba on chronic footshock-induced stress in rats. Indian J. Pharmacol. 41: 246–251 (2009)CrossRefGoogle Scholar
  18. 18.
    Kofoed JA, Houssay AB, Bozzini CE, Barrio Rendo ME. Effects of adrenalectomy upon ascorbic acid concentration in periodontal tissues in guinea pigs. J. Dent. Res. 42: 1400–1404 (1963)CrossRefGoogle Scholar
  19. 19.
    Binfare RW, Rosa AO, Lobato KR, Santos AR, Rodrigues AL. Ascorbic acid administration produced an antidepressant-like effect: Evidence for the involvement of monoaminergic neurotransmission. Prog. Neuro-Psychoph. 33: 530–540 (2009)CrossRefGoogle Scholar
  20. 20.
    Kim CS, Jo YJ, Park SH, Kim HJ, Han JY, Hong JT, Cheong JH, Oh KW. Anti-stress effects of ginsenoside RG3-standardized ginseng extract in restraint stressed animals. Biomol. Ther. 18: 219–225 (2010)CrossRefGoogle Scholar
  21. 21.
    Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Meth. 14: 149–167 (1985)CrossRefGoogle Scholar
  22. 22.
    Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226: 1342–1344 (1984)CrossRefGoogle Scholar
  23. 23.
    Mitchell AJ. The role of corticotropin-releasing factor in depressive illness: A critical review. Neurosci. Biobehav. R. 22: 635–651 (1998)CrossRefGoogle Scholar
  24. 24.
    Weninger SC, Dunn AJ, Muglia LJ, Dikkes P, Miczek KA, Swiergiel AH. Stress-induced behaviors require the corticotrophinreleasing hormone (CRH) receptor, but not CRH. P. Natl. Acad. Sci. USA 96: 8283–8288 (1999)CrossRefGoogle Scholar
  25. 25.
    Imaki T, Xiao-Quan W, Shibasaki T, Yamada K, Harada A, Chikada N, Naruse M, Demura H. Stress-induced activation of neuronal activity and corticotropin-releasing factor gene expression in the paraventricular nucleus is modulated by glucocorticoids in rats. J. Clin. Invest. 96: 231–238 (1995)CrossRefGoogle Scholar
  26. 26.
    Heinrich SC, Koob GF. Corticotropin-releasing factor in brain: A role in activation, arousal, and affect regulation. J. Pharmacol. Exp. Ther. 311: 427–440 (2004)CrossRefGoogle Scholar
  27. 27.
    Martî O, Andrës R, Armario A. Defective ACTH response to stress in previously stressed rats: Dependence on glucocorticoid status. Am. J. Physiol. Reg. I. 277: 869–877 (1999)Google Scholar
  28. 28.
    Clayman M, Tsang D, De Nicola AF, Johnstone RM. Specificity of action of adrenocorticotropin in vitro on ascorbate transport in rat adrenal glands. Biochem. J. 118: 283–289 (1970)Google Scholar
  29. 29.
    Swiergiel AH, Takahashi LK, Rubin WW, Kalin NH. Antagonism of corticotropin releasing factor receptors in the locus coeruleus attenuates shock-induces freezing in rats. Brain Res. 587: 263–268 (1992)CrossRefGoogle Scholar
  30. 30.
    Swiergiel AH, Takahashi LK, Kalin NH. Attenuation of stressinduced behavior by antagonism of corticotropin releasing factor receptors in the amygdala in the rat. Brain Res. 623: 229–234 (1993)CrossRefGoogle Scholar
  31. 31.
    De Boer SF, Slangen JL, Van der Gugten J. Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: Effects of chlordiazepoxide. Physiol. Behav. 47: 1089–1098 (1990)CrossRefGoogle Scholar
  32. 32.
    Kolber BJ, Roberts MS, Howell MP, Wozniak DF, Sands MS, Muglia LJ. Central amygdale glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. P. Natl. Acad. Sci. USA 105: 12004–12009 (2008)CrossRefGoogle Scholar
  33. 33.
    Kalin NH, Sherman JE, Takahashi LK. Antagonism of endogenous CRH systems attenuates stress-induced freezing behavior in rats. Brain Res. 457: 130–135 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2011

Authors and Affiliations

  • Ji Young Choi
    • 1
  • Ike Campomayor dela Peña
    • 1
  • Seo Young Yoon
    • 1
  • Tae Sun Woo
    • 1
  • Yoon Jung Choi
    • 1
  • Chan Young Shin
    • 3
  • Jong Hoon Ryu
    • 4
  • Yong Soo Lee
    • 5
  • Gu Yong Yu
    • 2
  • Jae Hoon Cheong
    • 1
    Email author
  1. 1.Uimyung Research Institute for NeuroscienceSahmyook UniversitySeoulKorea
  2. 2.Department of ChemistrySahmyook UniversitySeoulKorea
  3. 3.Department of Pharmacology, School of MedicineKonkuk UniversitySeoulKorea
  4. 4.Department of Life and Nanopharmaceutical SciencesKyung Hee UniversitySeoulKorea
  5. 5.Department of Pharmacology, School of MedicineDuksung Women’s UniversitySeoulKorea

Personalised recommendations