Advertisement

Food Science and Biotechnology

, Volume 20, Issue 1, pp 79–84 | Cite as

Tyrosine-fortified silk amino acids improve physical function of Parkinson’s disease rats

  • Tae Kyun Kim
  • Dongsun Park
  • Seongho Yeon
  • Sun Hee Lee
  • Young Jin Choi
  • Dae-Kwon Bae
  • Yun-Hui Yang
  • Goeun Yang
  • Seong Soo Joo
  • Woo-Taek Lim
  • Jeong-Yong Lee
  • Joon-Soo Lee
  • Heon-Sang Jeong
  • Seock-Yeon Hwang
  • Yun-Bae KimEmail author
Research Article

Abstract

Physical function-improving effects of a silk amino acid preparation (SAA) in Parkinson’s disease (PD) model rats were investigated. 6-Hydroxydopamine (6-OHDA, 8 μg)+ascorbic acid (0.6 μg) was injected into right medial forebrain bundle of 8-week-old Sprague-Dawley rats to induce PD, and SAA (50, 160, or 500 mg/kg) was orally administered for 30 days. On day 15 and 30, behavioral abnormalities, neuronal loss, and dopamine and its metabolites were analyzed. Injection of 6-OHDA impaired pole test performances, which were markedly improved by treatment with SAA. Increased using rate of ipsilateral (normal) forelimb in cyclinder test and apomorphine (0.05 mg/kg)-induced circling behavior of PD rats were remarkably corrected by the compounds. In addition, 6-OHDA-induced loss of neurons as well as decreases in dopamine and its metabolites were significantly attenuated by SAA. The results indicate that SAA preserves movement function of PD model animals by protecting dopamine neurons against 6-OHDA neurotoxicity.

Keywords

silk amino acid tyrosine Parkinson’s disease physical function neuroprotection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexi T, Borlongan CV, Faull RL, Williams CE, Clark RG, Gluckman PD, Hughes PE. Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog. Neurobiol. 60: 409–470 (2000)CrossRefGoogle Scholar
  2. 2.
    Agid Y. Parkinson’s disease: Pathophysiology. Lancet 337: 1321–1324 (1991)CrossRefGoogle Scholar
  3. 3.
    Olsson M, Nikkhah G, Bentlage C, Bjarklund A. Forelimb akinesia in the rat Parkinson model: Differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J. Neurosci. 15: 3863–3875 (1995)Google Scholar
  4. 4.
    Abe K, Taguchi K, Wasai T, Ren J, Utsunomiya I, Shinohara T, Miyatake T, Sano T. Biochemical and pathological study of endogenous 1-benzyl-1,2,3,4-tetrahydroisoquinoline-induced parkinsonism in the mouse. Brain Res. 907: 134–138 (2001)CrossRefGoogle Scholar
  5. 5.
    Kim SU, Park IH, Kim TH, Kim KS, Choi HS, Hong SH, Bang JH, Lee MA, Joo IS, Lee CS, Kim YS. Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology 26: 129–140 (2006)CrossRefGoogle Scholar
  6. 6.
    Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, Maki M, Kim SU, Borlongan CV. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J. Neurosci. 26: 12497–12511 (2006)CrossRefGoogle Scholar
  7. 7.
    Redmond DE Jr, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, Parsons XH, Gonzalez R, Blanchard BC, Kim SU, Gu Z, Lipton SA, Markakis EA, Roth RH, Elsworth JD, Sladek JR Jr, Sidman RL, Snyder EY. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. P. Natl. Acad. Sci. USA 104: 12175–12180 (2007)CrossRefGoogle Scholar
  8. 8.
    Jeon S, Kim YJ, Kim S-T, Moon W, Chae Y, Kang M, Chung M-Y, Lee H, Hong M-S, Chung J-H, Joh TH, Lee H, Park H-J. Proteomic analysis of the neuroprotective mechanisms of acupuncture treatment in a Parkinson’s disease mouse model. Proteomics 8: 4822–4832 (2008)CrossRefGoogle Scholar
  9. 9.
    Borah A, Mohanakumar KP. Melatonin inhibits 6-hydroxydopamine production in the brain to protect against experimental parkinsonism in rodents. J. Pineal Res. 47: 293–300 (2009)CrossRefGoogle Scholar
  10. 10.
    Szczudlik A, Rudziñska M. Neuroprotective effect of dopamine agonists. Neurol. Neurochir. Pol. 41: S22–S28 (2007)Google Scholar
  11. 11.
    Schapira AH. Molecular and clinical pathways to neuroprotection of dopaminergic drugs in Parkinson disease. Neurology 72: S44–S50 (2009)CrossRefGoogle Scholar
  12. 12.
    Kondo T. Levodopa therapy from the neuroprotection viewpoint. From a clinical outlook. J. Neurol. 252(Suppl. 4): IV/32–IV/36 (2005)Google Scholar
  13. 13.
    Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. New Engl. J. Med. 339: 1130–1143 (1998)CrossRefGoogle Scholar
  14. 14.
    Liu WG, Chen Y, Li B, Lu GQ, Chen SD. Neuroprotection by pergolide against levodopa-induced cytotoxicity of neural stem cells. Neurochem. Res. 29: 2207–2214 (2004)CrossRefGoogle Scholar
  15. 15.
    Ogawa N, Asanuma M, Miyazaki I, Diaz-Corrales FJ, Miyoshi K. L-DOPA treatment from the viewpoint of neuroprotection. Possible mechanism of specific and progressive dopaminergic neuronal death in Parkinson’s disease. J. Neurol. 252(Suppl. 4): IV/23–IV/31 (2005)Google Scholar
  16. 16.
    Agnati LF, Leo G, Vergoni AV, Martínez E, Hockemeyer J, Lluis C, Franco R, Fuxe K, Ferré S. Neuroprotective effect of L-DOPA coadministered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson’s disease. Brain Res. Bull. 64: 155–164 (2004)CrossRefGoogle Scholar
  17. 17.
    Wu WR, Zhu XZ. Involvement of monoamine oxidase inhibition in neuroprotective and neurorestorative effects of Ginkgo biloba extract against MPTP-induced nigrostriatal dopaminergic toxicity in C57 mice. Life Sci. 65: 157–164 (1999)CrossRefGoogle Scholar
  18. 18.
    Levites Y, Weinreb O, Maor G, Youdim MBH, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-terahydropyridine-induced dopaminergic neurodegeneration. J. Neurochem. 78: 1073–1082 (2001)CrossRefGoogle Scholar
  19. 19.
    Van Kampen J, Robertson H, Hagg T, Drobitch R. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp. Neurol. 184: 521–529 (2003)CrossRefGoogle Scholar
  20. 20.
    Rojas P, Serrano-García N, Mares-Sámano JJ, Medina-Campos ON, Pedraza-Chaverri J, Ogren SO. EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: Role of oxidative stress. Eur. J. Neurosci. 28: 41–50 (2008)CrossRefGoogle Scholar
  21. 21.
    Lee KG, Yeo JH, Lee YW, Kweon HY, Woo SO, Han SM, Kim JH. Studies on industrial utilization of silk protein. Korean J. Food Ind. 36: 25–37 (2003)Google Scholar
  22. 22.
    Shin M, Park M, Youn M, Lee Y, Nam M, Park I, Jeong Y. Effects of silk protein hydrolysates on blood glucose and serum lipid in db/db diabetic mice. J. Korean Soc. Food Sci. Nutr. 35: 1343–1348 (2006)CrossRefGoogle Scholar
  23. 23.
    Lee Y, Park M, Choi J, Kim J, Nam M, Jeong Y. Effects of silk protein hydrolysates on blood glucose level, serum insulin, and leptin secretion in OLEFT rats. J. Korean Soc. Food Sci. Nutr. 36: 703–707 (2007)CrossRefGoogle Scholar
  24. 24.
    Hyun CK, Kim IY, Frost SC. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J. Nutr. 134: 3257–3263 (2004)Google Scholar
  25. 25.
    Hwang E, Kang B, Kim B, Lee HJ. Protein quality evaluation and effect of plasma contents of acid hydrolysates of cocoon in rats fed by high cholesterol, high triglyceride, and high sucrose diet. J. Korean Soc. Food Sci. Nutr. 30: 1004–1009 (2001)Google Scholar
  26. 26.
    Lee SH, Cho HN, Hyun CK, Jew SS. Physiology functional characteristic of silk peptide. Food Sci. Ind. 35: 57–62 (2002)Google Scholar
  27. 27.
    Sugiyama K, Kushima Y, Muramatsu K. Effect of sulfur containing amino acid and glycine on plasma cholesterol level in rats fed on a high cholesterol diet. Arg. Biol. Chem. Tokyo 49: 3455–3461 (1985)Google Scholar
  28. 28.
    Kim TM, Ryu JM, Seo IK, Lee KM, Yeon S, Lim W-T, Lee J-Y, Hwang SY, Kim Y-B. Four-week repeated-dose toxicity of silk amino acids in rats. Lab. Anim. Res. 24: 565–573 (2008)Google Scholar
  29. 29.
    Shin S, Park D, Yeon S, Jeon JH, Kim TK, Joo SS, Lim W-T, Lee JY, Kim Y-B. Stamina-enhancing effects of silk amino acid preparations in mice. Lab. Anim. Res. 25: 127–134 (2009)Google Scholar
  30. 30.
    Shin S, Yeon S, Park D, Oh J, Kang H, Kim S, Joo SS, Lim W-T, Lee J-Y, Choi K-C, Kim KY, Kim SU, Kim J-C, Kim Y-B. Silk amino acids improve physical stamina and male reproductive function of mice. Biol. Pharm. Bull. 33: 273–278 (2009)CrossRefGoogle Scholar
  31. 31.
    Kang YK, Nam SH, Sohn HO, Lee DW. Inhibitory effects of silkworm-extract (SE) on monoamine oxidase activity in vitro and in vivo. Entomol. Res. 35: 189–193 (2005)CrossRefGoogle Scholar
  32. 32.
    Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav. Brain Res. 162: 1–10 (2005)CrossRefGoogle Scholar
  33. 33.
    Zeevalk GD, Manzino L, Sonsalla PK, Bernard LP. Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: Relevance to Parkinson’s disease. Exp. Neurol. 203: 512–520 (2007)CrossRefGoogle Scholar
  34. 34.
    Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peoxidation and tyrosinase activity. Biosci. Biotech. Bioch. 62: 145–147 (1998)CrossRefGoogle Scholar
  35. 35.
    Coombes JS, McNaughton LR. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J. Sport Med. Phys. Fit. 40: 240–246 (2000)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2011

Authors and Affiliations

  • Tae Kyun Kim
    • 1
  • Dongsun Park
    • 1
  • Seongho Yeon
    • 2
  • Sun Hee Lee
    • 1
  • Young Jin Choi
    • 1
  • Dae-Kwon Bae
    • 1
  • Yun-Hui Yang
    • 1
  • Goeun Yang
    • 1
  • Seong Soo Joo
    • 3
  • Woo-Taek Lim
    • 2
  • Jeong-Yong Lee
    • 2
  • Joon-Soo Lee
    • 4
  • Heon-Sang Jeong
    • 4
  • Seock-Yeon Hwang
    • 5
  • Yun-Bae Kim
    • 1
    Email author
  1. 1.College of Veterinary MedicineChungbuk National UniversityCheongju, ChungbukKorea
  2. 2.Worldway Co., Ltd.Jeoneui, ChungnamKorea
  3. 3.Division of Marine Molecular BiotechnologyGangneung-Wonju National UniversityGangneung, GangwonKorea
  4. 4.Department of Food Science and TechnologyChungbuk National UniversityCheongju, ChungbukKorea
  5. 5.Department of Biomedical Laboratory ScienceDaejeon UniversityDaejeonKorea

Personalised recommendations