Food Science and Biotechnology

, Volume 19, Issue 6, pp 1441–1447 | Cite as

Parallel analysis of 7 food-borne pathogens using capillary electrophoresis-based single-strand conformation polymorphism

  • Ae-Rim Kim
  • Mi-Hwa Oh
  • Kuk-Hwan Seol
  • Gi-Won Shin
  • Gyoo Yeol Jung
  • Sangsuk Oh
Research Article

Abstract

Capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) coupled with multiplex polymerase chain reaction (PCR) method was used for the detection of 7 pathogens associated with foodborne illness, including Salmonella enterica, Clostridium perfringens, Bacillus cereus, Listeria monocytogenes, Yersinia enterocolitica, Vibrio parahaemolyticus, and Escherichia coli O157:H7. The method was applied to model food systems, both of culture medium and cooked rice. The detection limit of individual microbes was in the range of 101–103 CFU/g, and that of the mixture of 7 microbes was 103 CFU/g in the cooked rice sample. This method allowed the detection and identification of all 7 food-borne pathogens within 5 hr without the requirement for enrichment steps.

Keywords

food-borne pathogen capillary electrophoresis-based single-strand conformation polymorphism (CESSCP) multiplex polymerase chain reaction (PCR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lampel KA, Orlandi PA, Kornegay L. Improved template preparation for PCR-based assays for detection of food-borne bacterial pathogens. Appl. Environ. Microb. 66: 4539–4542 (2000)CrossRefGoogle Scholar
  2. 2.
    Hongoh Y, Yuzawa H, Ohkuma M, Kudo T. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 221: 299–304 (2003)CrossRefGoogle Scholar
  3. 3.
    Carrilho E. DNA sequencing by capillary array electrophoresis and microfabricated array systems. Electrophoresis 21: 55–65 (2000)CrossRefGoogle Scholar
  4. 4.
    Butler JM, Wilson MR, Reeder DJ. Rapid mitochondrial DNA typing using restriction enzyme digestion of polymerase chain reaction amplicons followed by capillary electrophoresis separation with laser-induced fluorescence detection. Electrophoresis 19: 119–124 (1998)CrossRefGoogle Scholar
  5. 5.
    Andersen PS, Jespersgaard C, Vuust J, Christiansen M, Larsen LA. Capillary electrophoresis-based single strand DNA conformation analysis in high-throughput mutation screening. Hum. Mutat. 21: 455–465 (2003)CrossRefGoogle Scholar
  6. 6.
    Larsen LA, Jespersgaard C, Andersen PS. Single-strand conformation polymorphism analysis using capillary array electrophoresis for large-scale mutation detection. Nat. Protoc. 2: 1458–1466 (2007)CrossRefGoogle Scholar
  7. 7.
    Oh MH, Park YS, Paek SH, Kim HY, Jung GY, Oh S. A rapid and sensitive method for detecting food-borne pathogens by capillary electrophoresis-based single-strand conformation polymorphism. Food Control 19: 1100–1104 (2008)CrossRefGoogle Scholar
  8. 8.
    Shin GW, Cho YS, Hwang HS, Park JH, Jung GY. A two-step quantitative pathogen detection system based on capillary electrophoresis. Anal. Biochem. 383: 31–37 (2008)CrossRefGoogle Scholar
  9. 9.
    Zinger L, Gury J, Giraud F, Krivobok S, Gielly L, Taberlet P, Geremia RA. Improvements of polymerase chain reaction and capillary electrophoresis single-strand conformation polymorphism methods in microbial ecology toward a high-throughput method for microbial diversity studies in soil. Microb. Ecol. 54: 203–216 (2007)CrossRefGoogle Scholar
  10. 10.
    Dohrmann AB, Tebbe CC. Microbial community analysis by PCR-single-strand conformation polymorphism (PCR-SSCP). Vol. 1, pp. 809–838. In: Molecular Microbial Ecology Manual 2nd. Kluwer Academic Publishers, Dordrecht, Germany (2004)Google Scholar
  11. 11.
    Hoe MG, Flavier S, Christen R, Botel J, Labrenz M, Brettar I. Retrieval of nearly complete 16S rRNA gene sequences from environmental DNA following 16S rRNA-based community fingerprinting. Environ. Microbiol. 7: 670–675 (2005)CrossRefGoogle Scholar
  12. 12.
    Labrenz M, Jost G, Pohl C, Beckmann S, Martens-Habbena W, Jurgens K. Impact of different in vitro electron donor/acceptor conditions on potential chemolithoautotrophic communities from marine pelagic redoxclines. Appl. Environ. Microb. 71: 6664–6672 (2005)CrossRefGoogle Scholar
  13. 13.
    Macedo AJ, Kuhlicke U, Neu TR, Timmis KN, Abraham WR. Three stages of a biolm community developing at the liquid-liquid interface between polychlorinated biphenyls and water. Appl. Environ. Microb. 71: 7301–7309 (2005)CrossRefGoogle Scholar
  14. 14.
    Alarcn B, Garca-Caas V, Cifuentes A, Gonzlez R, Aznar R. Simultaneous and sensitive detection of three food-borne pathogens by multiplex PCR, capillary gel electrophoresis, and laser-induced fluorescence. J. Agr. Food Chem. 52: 7180–7186 (2004)CrossRefGoogle Scholar
  15. 15.
    McElroy DM, Jaykus L, Foegeding PM. Validation and analysis of modeled predictions of growth of Bacillus cereus spores in boiled rice. J. Food Protect. 63: 268–272 (2000)Google Scholar
  16. 16.
    Bioinformatics and Research Computing. DNA and genomic analysis. Available from: http://jura.wi.mit.edu/bio/dna. Accessed Jan. 15, 2009.
  17. 17.
    Rouchka EC, Cui X, Khalyfa A, Cooper NGF. University of Louisville Bioinformatics Research Group. Available from: http://kbrin.a-bldg.louisville.edu/Tools/MPrime1.3/MPrime.html. Accessed Jan. 15, 2009.
  18. 18.
    Oh MH, Park YS, Paek SH, Shin GW, Kim HY, Jung GY, Oh S. Simultaneous identificaton of seven food-borne pathogens and Escherichia coli (pathogenic and non-pathogenic) using capillary electrophoresis-based single-strand conformation polymorphism coupled with multiplex PCR. J. Food Protect. 72: 1262–1266 (2009)Google Scholar
  19. 19.
    Bertrnad R, Roig B. Evaluation of enrichment-free PCR-based detection on the rfbE gene of Escherichia coli O157-Application to municipal wastewater. Water Res. 41: 1280–1286 (2007)CrossRefGoogle Scholar
  20. 20.
    Park YS, Chu HS, Hwang SH, Seo JH, Choi CY, Jung GY. A precise mRNA quantication method using CE-based SSCP. Electrophoresis 27: 3836–3845 (2006)CrossRefGoogle Scholar
  21. 21.
    Chung JH, Park YS, Kim J, Shin GW, Nam MH, Oh MK, Kim CW, Jung GY. Parallel analysis of antimicrobial activities in microbial community by SSCP based on CE. Electrophoresis 28: 2416–2423 (2007)CrossRefGoogle Scholar
  22. 22.
    Gillman LM, Gunton J, Turenne CY, Wolfe J, Kabani AM. Identification of Mycobacterium species by multiple-fluorescence PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J. Clin. Microbiol. 39: 3085–3091 (2001)CrossRefGoogle Scholar
  23. 23.
    Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH. Multiplex PCR: Critical parameters and step-by-step protocol. Biotechniques 23: 504–511 (1997)Google Scholar
  24. 24.
    Kim J, Demeke T, Clear, RM, Patrick SK. Simultaneous detection by PCR of Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium in artificially inoculated wheat grain. Int. J. Food Microbiol. 111: 21–25 (2006)CrossRefGoogle Scholar
  25. 25.
    Kim JS, Lee GG, Park JS, Jung YH, Kwak HS, Kim SB, Nam YS, Kwon ST. A novel multiplex PCR Assay for rapid and simultaneous detection of five pathogenic bacteria: Escherichia coli O157:H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus. J. Food Protect. 70: 1656–1662 (2007)Google Scholar
  26. 26.
    Park YS, Lee SR, Kim YG. Detection of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes in kimchi by multiplex polymerase chain reaction (mPCR). J. Microbiol. 44: 92–97 (2006)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2010

Authors and Affiliations

  • Ae-Rim Kim
    • 1
  • Mi-Hwa Oh
    • 2
  • Kuk-Hwan Seol
    • 2
  • Gi-Won Shin
    • 3
  • Gyoo Yeol Jung
    • 3
  • Sangsuk Oh
    • 1
  1. 1.Department of Food Science and Technology, College of EngineeringEwha Womans UniversitySeoulKorea
  2. 2.National Institute of Animal ScienceRural Development AdministrationSuwon, GyeonggiKorea
  3. 3.Department of Chemical EngineeringPohang University of Science and TechnologyPohang, GyeongbukKorea

Personalised recommendations