Food Science and Biotechnology

, Volume 19, Issue 5, pp 1191–1197 | Cite as

Rapid detection of Vibrio parahaemolyticus strains and virulent factors by loop-mediated isothermal amplification assays

  • Xihong Zhao
  • Li Wang
  • Jin Chu
  • Yanyan Li
  • Yanmei Li
  • Zhenbo Xu
  • Lin Li
  • Mark E. Shirtliff
  • Xiaowei He
  • Yao Liu
  • Jihua Wang
  • Liansheng Yang
Research Article

Abstract

A loop-mediated isothermal amplification (LAMP) method for rapid detection of the foodborne Vibrio parahaemolyticus strains and related virulent factors had been developed and evaluated in this study. Six primers, including outer primers, inner primers, and loop primers, were specially designed for recognizing 8 distinct sequences on 3 target genes, which were tlh, tdh, and trh. The detection limits were found to be 100, 100 fg, and 1 pg DNA/tube for tlh, tdh, and trh, respectively. Application of LAMP assays were performed on 368 foodborne V. parahaemolyticus strains, the sensitivities of LAMP assays for the tlh, tdh, and trh were 100, 95.6, and 96.4%, and the negative predictive values (NPV) were 100, 84.7, and 93.1%, respectively; with a 100% specificity and positive predictive value (PPV) for all 3 target genes.

Keywords

loop-mediated isothermal amplification (LAMP) Vibrio parahaemolyticus rapid detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rasekh J, Thaler AM, Engeljohn DL, Pihkala NH. Food Safety and Inspection Service policy for control of poultry contaminated by digestive tract contents: A review. J. Appl. Poultry Res. 14: 603–611 (2005)Google Scholar
  2. 2.
    Dileep V, Kumar HS, Kumar Y. Application of polymerase chain reaction for detection of Vibrio parahaemolyticus associated with tropical seafoods and coastal environment. Lett. Appl. Microbiol. 36: 423–427 (2003)CrossRefGoogle Scholar
  3. 3.
    AKaper JB, Remmers EF. A medium for presumptive identification of Vibrio parahaemolyticus. J. Food Protect. 43: 936–938 (1980)Google Scholar
  4. 4.
    Sakazaki R, Karashimada T, Yuda K. Enumeration of and hygienic standard of food safety for V. parahaemolyticus. Arch. Lebensmittelhyg. 30: 103–106 (1979)Google Scholar
  5. 5.
    Cai TX, Jiang LY, Yang CB. Application of real-time PCR for quantitative detection of Vibrio parahaemolyticus from seafood in eastern China. Fems Immunol. Med. Mic. 46: 180–186 (2006)CrossRefGoogle Scholar
  6. 6.
    Tada J, Ohashi T, Nishimura N. Detection the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Mol. Cell. Probe 6: 477–487 (1992)CrossRefGoogle Scholar
  7. 7.
    Kim YB, Okuda J, Matsumoto C. Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J. Clin. Microbiol. 37: 1173–1177 (1999)Google Scholar
  8. 8.
    Nordstrom JL, Vickery MCL, Blackstone GM, Murray SL, DePaola A. Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl. Environ. Microb. 73: 5840–5847 (2007)CrossRefGoogle Scholar
  9. 9.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: e63 (2000)CrossRefGoogle Scholar
  10. 10.
    Mori Y, Nagamine K, Tomita N. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Bioph. Res. Co. 289: 150–154 (2001)CrossRefGoogle Scholar
  11. 11.
    Nagamine K, Watanabe K, Ohtsuka K. Loop-mediated isothermal amplification reaction using a nondenatured template. Clin Chem. 47: 1742–1743 (2001)Google Scholar
  12. 12.
    Wang L, Shi L, Alam MJ, Geng Y, Li L. Specific and rapid detection of foodborne Salmonella by loop-mediated isothermal amplification method. Food Res. Int. 41: 69–74 (2008)CrossRefGoogle Scholar
  13. 13.
    Zhao X, Li Y, Wang L, You L, Xu Z, Li L, He X, Liu Y, Wang J, Yang L. Development and application of a loop-mediated isothermal amplification method on rapid detection Escherichia coli O157 strains from food samples. Mol. Biol. Rep. 37: 2183–2188 (2010)CrossRefGoogle Scholar
  14. 14.
    Zhao X, Wang L, Li Y, Xu Z, Li L, He X, Liu Y, Wang J, Yang L. Development and application of a loop-mediated isothermal amplification method on rapid detection of Pseudomonas aeruginosa strains. World J. Microb. Biot. (DOI 10.1007/s11274-010-0429-0)Google Scholar
  15. 15.
    Xu Z, Shi L, Zhang C, Zhang L, Li X, Cao Y, Li L, Yamasaki S. Nosocomial infection caused by class 1 integron-carrying Staphylococcus aureus in a hospital in South China. Clin. Microbiol. Infec. 13: 980–984 (2007)CrossRefGoogle Scholar
  16. 16.
    Xu Z, Shi L, Alam MJ, Li L, Yamasaki S. Integron-bearing methicillin-resistant coagulase-negative staphylococci in South China, 2001–2004. Fems Microbiol. Lett. 278: 223–230 (2008)CrossRefGoogle Scholar
  17. 17.
    Xu Z, Li L, Alam MJ, Zhang L, Yamasaki S, Shi L. First confirmation of integron-bearing methicillin-resistant Staphylococcus aureus. Curr. Microbiol. 57: 264–268 (2008)CrossRefGoogle Scholar
  18. 18.
    Xu Z, Li L, Shirtliff ME, Alam MJ, Yamasaki S, Shi L. Occurrence and characteristics of class 1 and 2 integrons in Pseudomonas aeruginosa isolates from patients in southern China. J. Clin. Microbiol. 47: 230–234 (2009)CrossRefGoogle Scholar
  19. 19.
    Xu Z, Li L, Shirtliff ME, Peters BM, Peng Y, Alam MJ, Yamasaki S, Shi L. First report of class 2 integron in clinical Enterococcus faecalis and class 1 integron in Enterococcus faecium in South China. Diagn. Micr. Infec. Dis. (DOI:10.1016/j.diagmicrobio.2010.05.014)Google Scholar
  20. 20.
    Horisaka T, Fujita K, Iwata T. Sensitive and specific detection of Yersinia pseudotuberculosis by loop-mediated isothermal amplification. J. Clin. Microbiol. 42: 5349–5352 (2004)CrossRefGoogle Scholar
  21. 21.
    Parida M, Horioke K, Ishida H. Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loopmediated isothermal amplification assay. J. Clin. Microbiol. 43: 2895–2903 (2005)CrossRefGoogle Scholar
  22. 22.
    Kaneko H, Kawana T, Fukushima E, Suzutani T. Tolerance of loopmediated isothermal amplification to a culture medium and biological substances. J. Biochem. Bioph. Meth. 70: 499–501 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2010

Authors and Affiliations

  • Xihong Zhao
    • 1
    • 2
  • Li Wang
    • 3
  • Jin Chu
    • 1
  • Yanyan Li
    • 4
  • Yanmei Li
    • 5
  • Zhenbo Xu
    • 1
    • 6
  • Lin Li
    • 1
  • Mark E. Shirtliff
    • 6
    • 7
  • Xiaowei He
    • 1
  • Yao Liu
    • 8
  • Jihua Wang
    • 9
  • Liansheng Yang
    • 1
  1. 1.College of Light Industry and Food SciencesSouth China University of TechnologyGuangzhouChina
  2. 2.Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and PharmacyWuhan Institute of TechnologyWuhanHubei, China
  3. 3.Food Safety Key Laboratory of Guangdong Province, College of Food ScienceSouth China Agricultural UniversityGuangzhouChina
  4. 4.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  5. 5.Guangzhou Medical CollegeGuangzhouChina
  6. 6.Department of Microbial Pathogenesis, Dental SchoolUniversity of MarylandBaltimoreUSA
  7. 7.Department of Microbiology and Immunology, School of MedicineUniversity of MarylandBaltimoreUSA
  8. 8.Zhongshan Supervision Testing Institute of Quality & MetrologyZhongshanChina
  9. 9.Guangzhou Wondfo Biotechnology CompanyGuangzhouChina

Personalised recommendations