Advertisement

Food Science and Biotechnology

, Volume 19, Issue 3, pp 831–836 | Cite as

Antioxidant activities of lotus leaves (Nelumbo nucifera) and barley leaves (Hordeum vulgare) extracts

  • Ju-Hui Choe
  • Aera Jang
  • Ji-Hun Choi
  • Yun-Sang Choi
  • Doo-Jeong Han
  • Hack-Youn Kim
  • Mi-Ai Lee
  • Hyun-Wook Kim
  • Cheon-Jei KimEmail author
Research Note

Abstract

This study evaluated the antioxidant activities of lotus leaf extracts by methanol (L/M) and ethanol (L/E), and barley leaf extracts, also by methanol (B/M), and ethanol (B/E). The 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of L/M was higher than that of the other extracts at 250 ppm, with the exception of butylhydroxytoluene (BHT). The reducing powers of the treatments at 250 ppm were in the following order: BHT (2.91)>L/M (2.90)>L/E (2.26)>B/E (2.09)>B/M (2.01). In addition, L/M showed the highest concentration of total phenols, total flavonoids, and strongest superoxide dismutase (SOD)-like activity among the treatments. Thus, lotus and barley leaves extracted by methanol and ethanol that have antioxidant activities may be alternatives to synthetic antioxidants in the food industry.

Keywords

lotus leaf extract barley leaf extract total phenol content oxidation activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang J, Zhang Q, Zhang Z, Li Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 42: 127–132 (2008)CrossRefGoogle Scholar
  2. 2.
    Aruom OI. Nutrition and health aspects of free radicals and antioxidant. Food Chem. Toxicol. 62: 671–683 (1994)Google Scholar
  3. 3.
    Safer AM, Al-Nughamish AJ. Hepatotoxicity induced by the antioxidant food additive butylated hydroxytoluene (BTH) in rats: An electrn microscopical study. Histol. Histopathol. 14: 391–406 (1999)Google Scholar
  4. 4.
    Kanatt SR, Chander R, Sharma A. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chem. 100: 451–458 (2007)CrossRefGoogle Scholar
  5. 5.
    Jung CH, Seog HM, Choi IW, Park MW, Cho HY. Antioxidant properties of various solvent extracts from wild ginseng leaves. LWT-Food Sci. Technol. 39: 266–274 (2006)CrossRefGoogle Scholar
  6. 6.
    Lee YS, Joo EY, Kim NW. Polyphenol contents and physiological activity of the Lespedezabicolor extracts. Korean J. Food Preserv. 13: 616–626 (2006)Google Scholar
  7. 7.
    Ko BS, Jun DW, Jang JS, Kim JH, Park SM. Effect of Sasa Borealis and white lotus roots and leaves on insulin action and secretion in vivo. Korean J. Food Sci. Technol. 38: 114–120 (2006)Google Scholar
  8. 8.
    Lee YC, Son JY, Kim KT, Kim SS. Antioxidant activity of solvent extract isolated from barley leaves. J. Korean Soc. Food Sci. Nutr. 7: 332–337 (1994)Google Scholar
  9. 9.
    Mahnaz B, Bryan L, Spangelom YB, Yoshihide H, Hideaki H, Hideo U, Allan LG. Isolation of a vitamin E analog from a green barley leaf extract that stimylates release of prolactin and growth hormone release of prolactin and growth hormone from rat anterior pityitary cells in vitro. J. Nutr. Biochem. 5: 145–150 (1994)CrossRefGoogle Scholar
  10. 10.
    Janis JD, Joji O, Sadatoshi N, Yoshihide H, Takayuki S. Degradation of organophosphorus pesticides in aqueous extracts of young green barley leaves. J. Sci. Food Agr. 79: 1311–1314 (1999)CrossRefGoogle Scholar
  11. 11.
    Lee KW, Kim YJ, Lee HJ, Lee CY. Cocoa has more phenolis phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agr. Food Chem. 51: 7292–7295 (2003)CrossRefGoogle Scholar
  12. 12.
    Brand-Williams W, Cuvelier ME, Berset C. Use of free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol. 28: 25–30 (1995)Google Scholar
  13. 13.
    Oyaizu M. Studies on product of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307–315 (1986)Google Scholar
  14. 14.
    Slinkard K, Singleton VL. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Viticult. 28: 49–55 (1977)Google Scholar
  15. 15.
    Woisky RG, Salatino A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apicult. Res. 37: 99–105 (1998)Google Scholar
  16. 16.
    Marklund S, Marklund G. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 468–474 (1975)Google Scholar
  17. 17.
    SAS Institute, Inc. SAS User’s Guide. Statistical Analysis Systems Institute, Cary, NC, USA (1999)Google Scholar
  18. 18.
    Khattak KF, Simpson TJ, Ihasnullah. Effect of gamma irradiation on the microbial load, nutrient composition, and free radical scavenging activity of Nelumbo nucifera rhizome. Radiat. Phys. Chem. 78: 206–212 (2009)CrossRefGoogle Scholar
  19. 19.
    Kim NM, Sung HS, Kim WJ. Effect of solvents and some extraction conditions on antioxidant activity in cinnamon extracts. Korean J. Food Sci. Technol. 25: 204–209 (1993)Google Scholar
  20. 20.
    Sánchenz-Moreno C. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 8: 121–137 (2002)Google Scholar
  21. 21.
    Kuljarachanan T, Devahastin S, Chiewchan N. Evalution of antioxidant compounds in lime residues during drying. Food Chem. 113: 944–949 (2009)CrossRefGoogle Scholar
  22. 22.
    Ozsoy N, Can A, Yanardag R, Akev N. Antioxidant activity of Smilax excels L. leaf extracts. Food Chem. 110: 571–583 (2008)CrossRefGoogle Scholar
  23. 23.
    Chua MT, Tung YT, Chang ST. Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresource Technol. 99: 1918–1925 (2008)CrossRefGoogle Scholar
  24. 24.
    Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in UIIung Island. Korean J. Food Sci. Technol. 37: 233–240 (2005)Google Scholar
  25. 25.
    Yen GC, Duh PD. Antioxidant properties of methanolic extracts from peanut hulls. J. Am. Oil Chem. Soc. 70: 383–386 (1993)CrossRefGoogle Scholar
  26. 26.
    Lee SY, Shin YJ, Park JH, Kim SM Park CS. An analysis of the gyungokgo’s ingredients and a comparison study on anti-oxidation effects according to the kinds of extract. Korean J. Herbol. 23: 123–136 (2008)Google Scholar
  27. 27.
    Duh PD, Yen WJ, Du PC, Yen GC. Antioxidant activity of mung bean hull. J. Am. Oil Chem. Soc. 75: 1063–1069 (1997)Google Scholar
  28. 28.
    Kim SB, Rho SB, Rhyu DY, Kim DW. Effect of Nelumbo nucifera leaves on hylerlipidemic and atherosclerotic bio F1B hamster. Korean J. Pharmacogn. 36: 229–234 (2005)Google Scholar
  29. 29.
    Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. Antioxidant activity of extracts from Acacia confuse bark and heartwood. J. Agr. Food Chem. 49: 3420–3424 (2001)CrossRefGoogle Scholar
  30. 30.
    Decker EA. The role of phenolics, conjugated linoleic acid, carnosine, and pyrroloquinoline quinine as nonessential dietary antioxidants. Nutr. Rev. 53: 49–58 (1995)Google Scholar
  31. 31.
    Yang D, Wang Q, Ke L, Jiang J, Ying T. Antioxidant activities of various extracts of lotus (Nelumbo nucifera Gaertn.) rhizome. Asia Pac. J. Clin. Nutr. 16: 158–163 (2007)Google Scholar
  32. 32.
    Rice-Evans CA, Miller NJ, Pagana G. Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933–956 (1996)CrossRefGoogle Scholar
  33. 33.
    Song JC. Functional Food. Bomoonkak Press, Seoul, Korea. p. 163 (1995)Google Scholar
  34. 34.
    Elzaawely AA, Xuan TD, Koyama H, Tawata S. Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of A. zerumbet (Pers.) B. L. Burtt. & R. M. Sm. Food Chem. 104: 1648–1653 (2007)CrossRefGoogle Scholar
  35. 35.
    Meyer AS, Isaksen A. Application of enzymes as food antioxidants. Trends Food Sci. Tech. 6: 300–304 (1995)CrossRefGoogle Scholar
  36. 36.
    Kim MH, Kang WW, Lee NH, Kweon DJ, Choi UK. Antioxidant activities of extract with water and ethanol of Perilla frutescens var. acuta kudo leaf. J. Korean Soc. Appl. Biol. Chem. 50: 327–333 (2007)Google Scholar
  37. 37.
    Lee KS, Kim MG, Lee KY. Antioxidative activity of ethanol extract from lotus (Nelumbo nucifera) leaf. J. Korean Soc. Food Sci. Nutr. 35: 182–186 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2010

Authors and Affiliations

  • Ju-Hui Choe
    • 1
    • 2
  • Aera Jang
    • 2
  • Ji-Hun Choi
    • 3
  • Yun-Sang Choi
    • 3
  • Doo-Jeong Han
    • 1
  • Hack-Youn Kim
    • 1
  • Mi-Ai Lee
    • 1
  • Hyun-Wook Kim
    • 1
  • Cheon-Jei Kim
    • 1
    Email author
  1. 1.Department of Food Science and Biotechnology of Animal ResourcesKonkuk UniversitySeoulKorea
  2. 2.National Institute of Animal ScienceRural Development AdministrationSuwon, GyeonggiKorea
  3. 3.Research Institute for Meat Science and CultureKonkuk UniversitySeoulKorea

Personalised recommendations