Food Science and Biotechnology

, Volume 19, Issue 2, pp 373–381 | Cite as

Isolation and characterization of anti-listerial and amylase sensitive enterocin producing Enterococcus faecium DB1 from Gajami-sikhae, a fermented flat fish in Korea

Research Article

Abstract

Bacteriocinogenic Enterococcus faecium DB1 was isolated from Korean gajami-sikhae, a lactic fermented flat fish. The antimicrobial spectrum of E. faecium DB1 was limited to Listeria monocytogenes, Lactobacillus curvatus, and Pediococcus acidilactici in agar well diffusion assay; while it was expanded to other Grampositive and negative bacteria by direct and deferred assays. Induction of enterocin DB1 by co-culturing with sensitive indicators was not detected. Inactivation of bacteriocin activity was observed after treatment of crude enterocin DB1 with proteolytic enzymes and α-amylase, but not with catalase, sodium dodecyl sulfate, Tween 20 and 80. The bacteriocin activity was retained in pH between 2.0 and 10.0, and after treatment at 121°C for15 min. Maximum activity (1,280 AU/mL) against L. monocytogenes KCTC 3569 was observed in MRS broth and remained for at least 16 hr. The molecular weight of partially purified enterocin DB1 was approximately 16.5 kDa, and mode of action is bactericidal. Enterocin DB1 production trait is linked to a chromosomal DNA.

Keywords

enterocin Enterococcus faecium gajami-sikhae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee CH, Moussa S, Kim CS. Microbiology of gajami-sikhae fermentation. pp. 301–315. In: Fish Fermentation Technology. Lee CH, Steinkraus KH, Alan Reilly PJ (eds). United Nations University Press, Tokyo, Japan (1993)Google Scholar
  2. 2.
    Kim WJ. Screening of bacteriocinogenic lactic acid bacteria and their antagonistic effects in sausage fermentation. J. Microbiol. Biotechn. 6: 461–467 (1996)Google Scholar
  3. 3.
    Park WM, Choi WH, Yoo IJ, Kim YS, Kim WJ, Chung DH. Effect of lactic acid bacteria isolated from fermented foods on the microbiological properties of fermented sausages. Foods Biotechnol. 6: 145–148 (1997)Google Scholar
  4. 4.
    Kim WJ. Bacteriocins of lactic acid bacteria: Their potential as food biopreservative. Food Rev. Int. 9: 299–314 (1993)CrossRefGoogle Scholar
  5. 5.
    Klaenhammer TR. Bacteriocins of lactic acid bacteria. Biochimie 70: 337–349 (1998)CrossRefGoogle Scholar
  6. 6.
    Ray B, Daeschel MA. Bacteriocins of starter culture bacteria. pp. 133–165. In: Natural Antimicrobial Systems and Food Preservation. Dillon VM, Board RG (eds). CAB International, Wallingford, Oxon, UK (1994)Google Scholar
  7. 7.
    Reagaert P, Verbeke W, Devlieghere F, Debevere J. Consumer perception and choice of minimally processed vegetables and packaged fruits. Food. Qual. Prefer. 15: 259–270 (2004)CrossRefGoogle Scholar
  8. 8.
    Palumbo SA. Is refrigeration enough to restrain food-borne pathogens? J. Food Protect. 49: 1003–1009 (1986)Google Scholar
  9. 9.
    Rocourt J. Risk factors for listeriosis. Food Control 7: 195–202 (1996)CrossRefGoogle Scholar
  10. 10.
    Schuchat A, Swaminathan B, Broome CV. Epidemiology of human listeriosis. J. Clin. Microbiol. 4: 169–183 (1991)Google Scholar
  11. 11.
    Kim WJ, Hong SS, Cha SK, Koo YJ. Use of bacteriocinogenic Pediococcus acidilactici in sausage fermentation. J. Microbiol. Biotechn. 3: 199–203 (1993)Google Scholar
  12. 12.
    Bhunia AK, Johnson MC, Ray B. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Ind. Microbiol. Biot. 2: 319–322 (1987)Google Scholar
  13. 13.
    Schillinger U, Lücke FK. Identification of lactobacilli from meat and meat products. Food Microbiol. 4: 199–208 (1987)CrossRefGoogle Scholar
  14. 14.
    Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. pp. 21–32 (1989)Google Scholar
  15. 15.
    Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1–100 kDa. Anal. Biochem. 166: 368–379 (1987)CrossRefGoogle Scholar
  16. 16.
    Kim WJ, Ha DM, Ray B. Plasmid linkage of bacteriocin production and sucrose fermentation phenotypes in Pediococcus acidilactici M. J. Microbiol. Biotechn. 1: 169–175 (1991)Google Scholar
  17. 17.
    Geis A, Singh J, Teuber M. Potential of lactic streptococci to produce bacteriocin. Appl. Environ. Microb. 45: 205–211 (1983)Google Scholar
  18. 18.
    Harris LJ, Daeschel MA, Stiles E, Klaenhammer TR. Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. J. Food Protect. 52: 384–387 (1989)Google Scholar
  19. 19.
    Schillinger U, Lücke FK. Antibacterial activity of Lactococcus sake isolated from meat. Appl. Environ. Microb. 55: 1901–1906 (1989)Google Scholar
  20. 20.
    Okereke A, Montville TJ. Bacteriocin inhibition of Clostridium botulinum spores by lactic acid bacteria. J. Food Protect. 54: 349–353 (1991)Google Scholar
  21. 21.
    Cintas LM, Rodriguez JM, Fernandez MF, Sletten K, Nes IF, Hernandez PE, Holo H. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl. Environ. Microb. 61: 2643–2648 (1995)Google Scholar
  22. 22.
    Barefoot SF, Klaenhammer TR. Detection and activity of lacticin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microb. 45: 1808–1815 (1984)Google Scholar
  23. 23.
    West CA, Warner PJ. Plantacin B, a bacteriocin produced by Lactobacillus plantarum NCDO1193. FEMS Microbiol. Lett. 49: 163–165 (1988)Google Scholar
  24. 24.
    Fricourt BV, Barefoot SF, Testin RF, Hayasaka SS. Detection and activity of plantaricin F, an antibacterial substance from Lactobacillus plantarum BF001 isolated from processed channel catfish. J. Food Protect. 57: 698–702 (1994)Google Scholar
  25. 25.
    Nilsen T, Nes IF, Holo H. Enterolysin A, a cell-wall degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microb. 69: 2975–2984 (2003)CrossRefGoogle Scholar
  26. 26.
    Wescombe PA, Tagg JR. Purification and characterization of strepcin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl. Environ. Microb. 69: 2737–2747 (2003)CrossRefGoogle Scholar
  27. 27.
    Lewus CB, Sun S, Montville TJ. Production of an amylase-sensitive bacteriocin by an atypical Leuconostoc paramesenteroides strain. Appl. Environ. Microb. 58: 143–149 (1992)Google Scholar
  28. 28.
    Campos C, Rodriguez O, Calo-Mata P, Prado M, Barros-Velazquez J. Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium, and Enterococcus mundtii strains isolated from turbot (Psetta maxima). Food Res. Int. 39: 356–364 (2006)CrossRefGoogle Scholar
  29. 29.
    De Kwaadsteniet M, Todorov SD, Knoetze H, Dicks LMT. Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Gram-positive and Gram-negative bacteria. Int. J. Food. Microbiol. 105: 433–444 (2005)CrossRefGoogle Scholar
  30. 30.
    Schved F, Lalazar A, Henis Y, Juven BJ. Purification, partial characterization, and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. J. Appl. Bacteriol. 74: 67–77 (1993)Google Scholar
  31. 31.
    Upreti GC, Hinsdill RD. Isolation and characterization of a bacteriocin from a homofermentative Lactobacillus. Antimicrob. Agents Ch. 4: 487–494 (1973)Google Scholar
  32. 32.
    Keppler K, Geiser R, Holzapfel WH. An α-amylase sensitive bacteriocin of Leuconostoc carnosum. Food Microbiol. 11: 39–45 (1994)CrossRefGoogle Scholar
  33. 33.
    Huot E, Barrena-Bonzalez C, Petitdemange H. Tween 80 effect on bacteriocin synthesis by Lactococcus lactic subsp. cremoris J46. Lett. Appl. Microbiol. 22: 307–310 (1996)CrossRefGoogle Scholar
  34. 34.
    Gálvez A, Maqueda M, Valdivia E, Quesada A, Montoya E. Characterization and partial purification of broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Can. J. Microbiol. 32: 765–771 (1986)CrossRefGoogle Scholar
  35. 35.
    Todorov SD, Nyati H, Meincken M, Dicks LMT. Partial characterization of bacteriocin AMA-K, produced by Lactobacillus plantarum AMA-K isolated from naturally fermented milk from Zimbabwe. Food Control 18: 656–664 (2007)CrossRefGoogle Scholar
  36. 36.
    Ivanova I, Kabadjova P, Pantev A, Danova S, Dousset X. Detection, purification, and partial characterization of a novel bacteriocin substance produced by Lactococcus lactis susp. lactis B14 isolated from boza-Bulgarian traditional cereal beverage. Biocatal-Vestnik Moskov Univ. Kimia 41: 47–53 (2000)Google Scholar
  37. 37.
    De Vuyst L, Vandamme EJ. Antimicrobial potential of lactic acid bacteria. pp. 91–142. In: Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics, and Applications. De Vuyst L, Vandamme EJ (eds). Blackie Academic and Professional, London, UK (1994)Google Scholar
  38. 38.
    Elegado FB, Kim WJ, Kwon DY. Rapid purification, partial characterization, and antimicrobial spectrum of the bacteriocin pediocin AcM, from Pediococcus acidilactici M. Int. J. Food Microbiol. 37: 1–11 (1997)CrossRefGoogle Scholar
  39. 39.
    Mindich L. Bacteriocins of Diplococcus pneumoniae. I. Antagonistic relationships and genetic transformations. J. Bacteriol. 92: 1090–1098 (1966)Google Scholar
  40. 40.
    Pattnaik P, Grover S, Batish VK. Effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocin-like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiol. Res. 160: 213–218 (2005)CrossRefGoogle Scholar
  41. 41.
    Joerger MC, Klaenhammer TR. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus heleveticus 481. J. Bacteriol. 167: 439–446 (1986)Google Scholar
  42. 42.
    Barefoot SF, Chen YR, Hughes TA, Bodine AB, Shearer MY, Hughes MD. Identification and purification of protein that induces production of the Lactobacillus acidophilus bacteriocin lactacin B. Appl. Environ. Microb. 60: 3522–3528 (1994)Google Scholar
  43. 43.
    Maldonado-Barragán A, Ruiz-Barba JL, Jiménez-Díaz R. Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of Gram-positive bacteria. Arch. Microbiol. 181: 8–16 (2004)CrossRefGoogle Scholar
  44. 44.
    Sip A, Wlodzimierz G, Boyaval P. Enhancement of bacteriocin production by Carnobacterium divergens AS7 in the presence of a bacteriocin-sensitive strain Carnobacterium piscicola. Int. J. Food Microbiol. 42: 63–69 (1998)CrossRefGoogle Scholar
  45. 45.
    Rojo-Bezares B, Sáenz Y, Navaro L, Zarazaga M, Ruiz-Larrea F, Torres C. Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must. Food Microbiol. 24: 482–491 (2007)CrossRefGoogle Scholar
  46. 46.
    Tabasco R, García-Cayuela T, Peláez C, Requena T. Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria. Int. J. Food Microbiol. 132: 109–116 (2009)CrossRefGoogle Scholar
  47. 47.
    Maldonado-Barragán A, Ruiz-Barba JL, Jiménez-Díaz R. Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. Int. J. Food Microbiol. 130: 35–42 (2009)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Department of Food Science and TechnologyDongguk UniversitySeoulKorea

Personalised recommendations