Advertisement

Food Science and Biotechnology

, Volume 19, Issue 2, pp 343–348 | Cite as

Effects of persimmon-vinegar on lipid and carnitine profiles in mice

  • Yeon-Jeong Moon
  • Dong-Seong Choi
  • Suk-Heung Oh
  • Young-Sun Song
  • Youn-Soo Cha
Research Article

Abstract

The aim of this study was to investigate the effects of persimmon-vinegar supplementation on blood lipid profiles, carnitine concentrations, and hepatic mRNA levels of enzymes involved in fatty acid metabolism. Thirty-two C57BL/6J male mice were divided into 4 groups; control group (HD), industrial vinegar group (HD-V), and persimmon-vinegar groups (HD-PV1, HD-PV2). Serum triglyceride (TG) and total cholesterol (TC) concentrations significantly decreased in all vinegar-administered groups compared with the HD group. The hepatic TG and TC concentrations of persimmon-vinegar administered groups were significantly lower compared with the HD group. Liver acid insoluble acylcarnitine (AIAC) was significantly higher in the HD-PV2 than in HD and HD-V groups. The acetyl-CoA carboxylase (ACC) mRNA level tended to lower in all the vinegar administered groups compared with the HD group. These results suggest that the persimmon-vinegar has anti-obesity properties.

Keywords

persimmon-vinegar mice lipid profile carnitine hepatic mRNA level 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doucet E, Tremblay A. Food intake, energy balance, and body weight control. Eur. J. Clin. Nutr. 51: 846–855 (1997)CrossRefGoogle Scholar
  2. 2.
    Friedman JM, Leibel RL. Tackling a weighty problem. Cell 69: 217–220 (1992)CrossRefGoogle Scholar
  3. 3.
    Park SH, Jang MJ, Hong JH, Rhee SJ, Choi KH, Park MR. Effects of mulberry leaf extract feeding on lipid status of rats fed high cholesterol diets. J. Korean Soc. Food Sci. Nutr. 36: 43–50 (2007)CrossRefGoogle Scholar
  4. 4.
    Kim DH, Byun MW. Application of radiation technology on the processing of Korean traditional fermentation food. Food Ind. Nutr. 6: 38–44 (2001)Google Scholar
  5. 5.
    Sakanaka S, Ishihara Y. Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical-scavenging assays and on lipid oxidation in tuna homogenates. Food Chem. 107: 739–744 (2008)CrossRefGoogle Scholar
  6. 6.
    Xu QP, Tao WY, Ao ZH. Antioxidant activity of vinegar melanoidins. Food Chem. 102: 841–849 (2007)CrossRefGoogle Scholar
  7. 7.
    Fukuyama N, Jujo S, Ito I, Shizuma T, Myojin K, Ishiwata K, Nagano M, Nakazawa H, Mori H. Kurozu moromimatsu inhibits tumor growth of Lovo cells in a mouse model in vivo. Nutrition 23: 81–86 (2007)CrossRefGoogle Scholar
  8. 8.
    Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Brit. J. Nutr. 95: 916–924 (2006)CrossRefGoogle Scholar
  9. 9.
    So IC, Choi SK. The influence of persimmon vinegar and octacosanol mixture administration on exercise performance ability and blood fatigue factors. Korean J. Sport. Sci. 16: 791–802 (2007)Google Scholar
  10. 10.
    Moon YJ, Cha YS. Effects of persimmon-vinegar on lipid metabolism and alcohol clearance in chronic alcohol-fed rats. J. Med. Food 11: 38–45 (2008)CrossRefGoogle Scholar
  11. 11.
    Kim MK, Kim MJ, Kim SY, Jung DS, Jung YJ, Kim SD. Quality of persimmon vinegar fermented by complex fermentation method. J. East Asian Soc. Diet. Life 4: 39–50 (1994)Google Scholar
  12. 12.
    Jeong YJ, Lee GD, Kim KS. Optimization for the fermentation condition of persimmon-vinegar using response surface methodology. Korean J. Food Sci. Technol. 30: 1203–1208 (1998)Google Scholar
  13. 13.
    Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509 (1957)Google Scholar
  14. 14.
    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499–502 (1972)Google Scholar
  15. 15.
    Cederblad G, Lindstedt S. A method for the determination of carnitine in the picomole range. Clin. Chim. Acta 37: 235–243 (1972)CrossRefGoogle Scholar
  16. 16.
    Sachan DS, Rhew TH, Ruark RA. Ameliorating effects of carnitine and its precursors on alcohol-induced fatty liver. J. Clin. Nutr. 39: 738–744 (1984)Google Scholar
  17. 17.
    Fushimi T, Sato Y. Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats. Brit. J. Nutr. 94: 714–719 (2005)CrossRefGoogle Scholar
  18. 18.
    Gorinstein S, Zemser M, Weitz M, Halevy S, Deutsch J, Tilus K, Feintuch D, Guerra N, Fishman M, Bartnikowska E. Fluorometric analysis of phenolics in persimmon. Biosci. Biotech. Bioch. 58: 1087–1092 (1994)CrossRefGoogle Scholar
  19. 19.
    Gorinstein S, Bartnikowska E, Kulasek G, Zemser M, Trakhtenberg S. Dietary persimmon improves lipid metabolism in rats fed diets containing cholesterol. J. Nutr. 128: 2023–2027 (1998)Google Scholar
  20. 20.
    Gorinstein S, Kulasek GW, Bartnikowska E, Leontowicz M, Zemser M, Morawiec M, Trakhtenberg S. The influence of persimmon peel and persimmon pulp on the lipid metabolism and antioxidant activity of rats fed cholesterol. J. Nutr. Biochem. 9: 223–227 (1998)CrossRefGoogle Scholar
  21. 21.
    Gorinstein S, Kulasek GW, Bartnikowska E, Leontowicz M, Zemser M, Morawiec M, Trakhtenberg S. The effects of diets, supplemented with either whole persimmon or phenol-free persimmon, on rats fed cholesterol. Food Chem. 70: 303–308 (2000)CrossRefGoogle Scholar
  22. 22.
    Bremer J. Carnitine—metabolism and functions. Physiol. Rev. 63: 1420–1480 (1983)Google Scholar
  23. 23.
    Krahenbuhl S. Carnitine metabolism in chronic liver disease. Life Sci. 59: 1579–1599 (1996)CrossRefGoogle Scholar
  24. 24.
    Park SH, Park TS, Cha YS. Grape seed extract (Vitis vinifera) partially reverses high fat diet-induced obesity in C57BL/6J mice. Nutr. Res. Pract. 2: 227–233 (2008)CrossRefGoogle Scholar
  25. 25.
    Gornicki P. Apicoplast fatty acid biosynthesis as a target for medical intervention in apicomplexan parasites. Int. J. Parasitol. 33: 885–896 (2003)CrossRefGoogle Scholar
  26. 26.
    Zang Y, Wang T, Xie W, Wang-Fischer YL, Getty L, Han J, Corkey BE, Guo W. Regulation of acetyl CoA carboxylase and carnitine palmitoyl transferase-1 in rat adipocytes. Obes. Res. 13: 1530–1539 (2005)CrossRefGoogle Scholar
  27. 27.
    Fushimi T, Tayama K, Fukaya M, Kitakoshi K, Nakai N, Tsukamoto Y, Sato Y. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J. Nutr. 131: 1973–1977 (2001)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2010

Authors and Affiliations

  • Yeon-Jeong Moon
    • 1
  • Dong-Seong Choi
    • 2
  • Suk-Heung Oh
    • 2
  • Young-Sun Song
    • 3
  • Youn-Soo Cha
    • 1
  1. 1.Department of Food Science & Human Nutrition and Research Institute of Human EcologyChonbuk National UniversityJeonju, JeonbukKorea
  2. 2.Department of Food and BiotechnologyWoosuk UniversityJeonju, JeonbukKorea
  3. 3.School of Food Science and NutritionInje UniversityGimhae, GyeongnamKorea

Personalised recommendations