Food Science and Biotechnology

, Volume 19, Issue 1, pp 201–206 | Cite as

Xanthan gum production of Xanthomonas spp. Isolated from different plants

  • Tuncay Gumus
  • A. Sukru Demirci
  • Mustafa Mirik
  • Muhammet Arici
  • Yesim Aysan
Research Article

Abstract

Xanthan gum were produced from the following Xanthomonas strains; standard strain Xanthomonas campestris NRRL B-1459 and isolated strains Xanthomonas arbicola pv. juglandis, Xanthomonas axonopodis pv. vesicatoria, Xanthomonas axonopodis pv. begonia, Xanthomonas axonopodis pv. dieffenbachia. The viscosity features of the xanthan gums obtained were determined at 25–80°C with different pH values and were compared to commercial xanthan gum. Our results indicate that X. arbicola pv. juglandis showed the highest productivity (8.22±1.52 g/L gum). This was followed by X. axonopodis pv. begonia (7.74±1.30 g/L gum), and the control bacterial strain X. campestris NRRL B-1459 (7.46±0.28 g/L gum). X. axonopodis pv. vesicatoria showed the lowest productivity (6.40±0.55 g/L gum). No xanthan gum could be obtained from X. axonopodis pv. dieffenbachia. Xanthan gum produced by X. axonopodis pv. vesicatoria showed the highest viscosity value (428 mPa·sec at 1% solution) in all Xanthomonas strains isolated from plants.

Keywords

Xanthomonas spp. xanthan gum viscosity feature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkinson B, Mavituna F. Biochemical Engineering and Biotechnology Handbook. Macmillan Publishers, Basingstoke, UK. pp. 1–992 (1991)Google Scholar
  2. 2.
    Lopez M, Moreno J, Ramos-Cormenzana A. Xanthomonas campestris Strain Selection for Xanthan Production from Olive Mill Wastewaters. Elsevier Science Ltd., London, UK. pp.1828–1830 (2001)Google Scholar
  3. 3.
    Sutherland IW. Novel and established applications of microbial poliysaccharides. Trends Biotechnol. 16: 41–46 (1998)CrossRefGoogle Scholar
  4. 4.
    Demain AL. Small bugs, big business: The economic power of the microbe. Biotechnol. Adv. 18: 499–514 (2000)CrossRefGoogle Scholar
  5. 5.
    Kalogiannis S, Lakovidou G, Liakopoulou-Kyriakides M, Kyriakidis DA, Skaracis GN. Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem. 39: 249–256 (2003)CrossRefGoogle Scholar
  6. 6.
    Lachke A. Xanthan A versatile gum. Resonance 9: 25–33 (2004)CrossRefGoogle Scholar
  7. 7.
    Margaritis A, Pace GW. Microbial polysaccharides. pp.1005–1041. In: Comprehensive Biotechnology. Moo-Young M (ed). Pergamon Press, Oxford, UK (1985)Google Scholar
  8. 8.
    Kennedy JF, Bradshaw IJ. Production properties and application of xanthan. pp. 319–371. In: Progress in Industrial Microbiology. Bushell ME (ed). Vol.19. Elsevier, Amsterdam, Netherland (1984)Google Scholar
  9. 9.
    Marquet MM, Mikolajczak M, Thorne L, Pollock TJ. Improved strains for production of xhantan gum by fermentation of Xanthomonas campestris. J. Ind. Microb. Biot. 4: 55–64 (1989)CrossRefGoogle Scholar
  10. 10.
    Rosalam S, England R. Review of xanthan gum production from unmodified starches by Xanthomonas camprestris sp. Enzyme Microb. Tech. 39: 197–207 (2006)CrossRefGoogle Scholar
  11. 11.
    Drawowska H, Turna J. Consruction of lactose-utilizing Xanthomonas campestris with a mini-mu derivate. Appl. Environ. Microb. 61: 811–812 (1995)Google Scholar
  12. 12.
    Leach JG, Lilly VG, Wilson HA, Purvis MR. Bacterial polysaccharides: The nature and function of the exudates produced by Xanthomonas phaseoli. Phytopathology 47: 113–120 (1957)Google Scholar
  13. 13.
    Sahin F, Miller SA. Identification of the bacterial leaf spot pathogen of lettuce, Xantomonas campestris pv. vitians in Ohio, and assesment of cultivar resistance and seed treatment. Plant Dis. 81: 1443–1446 (1997)CrossRefGoogle Scholar
  14. 14.
    Aysan Y, Sahin F. First report of bacterial blight of anthurium caused by Xanthomonas axonopodis pv. dieffenbachiae in Turkey. Plant Pathol. 52: 783 (2003)CrossRefGoogle Scholar
  15. 15.
    Mirik M, Aysan Y, Cinar O. Copper-resistant strains of Xanthomonas axonopodis pv. vesicatoria (Doidge) Dye in the eastern Mediterranean region of Turkey. J. Plant Pathol. 89: 153–154 (2007)Google Scholar
  16. 16.
    Ornek H, Aysan Y, Mirik M, Sahin F. First report of bacterial leaf spot caused by Xanthomonas axonopodis pv. begonia, on begonia in Turkey. Plant Pathol. 56: 347 (2007)CrossRefGoogle Scholar
  17. 17.
    Mirik M, Selcuk F, Aysan Y, Sahin F. First outbreak of bacterial black rot on cabbage, broccoli, and brussels sprouts caused by Xanthomonas campestris pv. campestris in the Mediterranean Region of Turkey. Plant Dis. 92: 176 (2008)CrossRefGoogle Scholar
  18. 18.
    Yoo SD, Harcum SW. Xanthan gum production from waste sugar beet pulp. Bioresource Technol. 70: 105–109 (1999)CrossRefGoogle Scholar
  19. 19.
    Liakopoulou-Kyriakides M, Psomas SK, Kyriakidis DA. Xanthan gum production by Xanthomonas campestris w.t. fermentation from chestnut extract. Appl. Biochem. Biotech. 82: 175–183 (1999)CrossRefGoogle Scholar
  20. 20.
    Kawahara H, Obata H. Production of xanthan gum and ice-nucleating material from whey by Xanthomonas campestris pv. translucens. Appl. Microb. Biotech. 49: 353–358 (1998)CrossRefGoogle Scholar
  21. 21.
    Stredansky M, Conti E. Xanthan production by solid state fermentation. Process Biochem. 34: 581–587 (1999)CrossRefGoogle Scholar
  22. 22.
    DoĞan M, Kayacier A, Ic E. Rheological characteristics of some food hydrocolloids processed with gamma irradiation. Food Hydrocolloid 21: 392–396 (2007)CrossRefGoogle Scholar
  23. 23.
    Anonymous. SV Series Sine-wave Vibro Viscometer User’s Handbook. version 1.10. A&D Company Limited, Tokyo, Japan (2005)Google Scholar
  24. 24.
    SPSS for Windows. Statistical Program Package. version 10.0. Chicago, IL, USA (1999)Google Scholar
  25. 25.
    Rottowa I, Batessini G, Silva MF, Lerin L, Oliveria D, Padilla FF, Geciane T, Mossi A, Cansian RL, Luccio MD, Treichel H. Xanthan gum production and rheological behavior using different strains of Xanthomonas sp. Carbohyd. Polym. 77: 65–71 (2009)Google Scholar
  26. 26.
    Leela JK, Sharma G. Studies on xanthan production from Xanthomonas campestris. Bioproc. Biosyst. Eng. 23: 687–689 (2000)Google Scholar
  27. 27.
    Funahashi H, Yoshida T, Taguchi H. Effect of glucose concentration on xanthan gum production by Xanthomonas campestris. J. Ferment. Technol. 65: 603–606 (1987)CrossRefGoogle Scholar
  28. 28.
    Shu CHH, Yang ST. Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris. Biotech. Bioeng. 35: 454–468 (1990)CrossRefGoogle Scholar
  29. 29.
    Garcia-Ochoa F, Santos VE, Alcün A. Xanthan gum production in a laboratory aerated stirred tank bioreactor. Chem. Biochem. Eng. Q. 11: 69–74 (1997)Google Scholar
  30. 30.
    Moreira AS, Vendruscolo JLS, Gil-Tures C, Vendruscolo CT. Screening among 18 novel strains of Xanthmonas campestris pv. pruni. Food Hydrocolloid 15: 469–474 (2001)CrossRefGoogle Scholar
  31. 31.
    Esgalhado ME, Roseiro JC, Collaco MTA. Interactive effects of pH and temperature on cell growth and polymer production by Xanthomonas campestris. Process Biochem. 30: 667–671 (1995)Google Scholar
  32. 32.
    Moreno J, Lopez MJ, Vargas-Garcia C, Vazquez R. Use of agricultural wastes for xanthan production by Xanthomonas campestris. J. Ind. Microb. Biot. 21: 242–246 (1998)CrossRefGoogle Scholar
  33. 33.
    Bilanovic D, Shelef G, Green M. Xanthan fermentation of citrus waste. Bioresource Technol. 48: 169–172 (1994)CrossRefGoogle Scholar
  34. 34.
    Molina O, Fitzsimons R, Perotti N. Effect of corn step liquor on xanthan production by Xanthomonas campestris. Biotechol. Lett. 15: 495–498 (1993)CrossRefGoogle Scholar
  35. 35.
    Garcia-Ochoa F, Santos VE, Casas JA, Gomez E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 18: 1–31 (2000)CrossRefGoogle Scholar
  36. 36.
    Ashtaputre AA, Shah AK. Studies on a viscous, gel-forming exopolysaccharide from Sphingomonas paucimobilis GS1, Appl. Environ. Microb. 61: 1159–1162 (1995)Google Scholar
  37. 37.
    Rogovin SP, Anderson RF, Cadmus MC. Production of polysaccaride with Xanthomonas campestris. J. Biochem. Microbiol. 3: 51–63 (2004)CrossRefGoogle Scholar
  38. 38.
    Yaseen EL, Herald TJ, Aramouni FM, Alavi S. Rheological properties of selected gum solutions. Food Res. Int. 38: 111–119 (2005)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2010

Authors and Affiliations

  • Tuncay Gumus
    • 1
  • A. Sukru Demirci
    • 1
  • Mustafa Mirik
    • 2
  • Muhammet Arici
    • 1
  • Yesim Aysan
    • 3
  1. 1.Department of Food Engineering, Faculty of AgricultureNamik Kemal UniversityTekirdagTurkey
  2. 2.Department of Plant Protection, Faculty of AgricultureNamik Kemal UniversityTekirdagTurkey
  3. 3.Department of Plant Protection, Faculty of AgricultureCukurova UniversityAdanaTurkey

Personalised recommendations