Food Science and Biotechnology

, Volume 19, Issue 1, pp 19–25 | Cite as

In vitro evaluation of probiotic lactic acid bacteria isolated from dairy and non-dairy environments

  • Tae-Suk Song
  • Ji-Youn Kim
  • Ki-Hwan Kim
  • Byung-Moon Jung
  • Soong-Seop Yun
  • Sung-Sik YoonEmail author
Research Article


Four strains and 2 strains of lactic acid bacteria (LAB) were isolated from the commercial yogurt and kimchi products in Korea, respectively. Based on the 16S rRNA sequencing data, strain A from a drink-type yogurt manufactured by dairy company S, was a Gram-positive, rod-shaped Lactobacillus helveticus, and both strain B (company N) and D (company H) were identified as L. casei ssp. casei, and strain C (company L) as L. paracasei. None of yogurt strain B and D was recovered from the samples exposed to the simulated gastric juice, pH 2.0 for 1.5 hr. Of the 6 isolates tested, strain YS93 from kimchi was the most resistant to acidic condition using the simulated gastric juice, pH 2.0. Moreover, it was shown that 2 kimchi isolates and yogurt strain D produced antibacterial substances, probably bacteriocin-like peptide, which was inhibitory against Staphylococcus aureus as an indicator. In an adhesion assay using a Caco-2 cell, the adherence activity of kimchi strains YS29 and YS93 was significantly higher than those of 4 yogurt starter strains tested.


lactic acid bacteria probiotic identification adherence Caco-2 cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elder R. Drinkable yogurt beats the bagel. Drug Store News 25: 42–50 (2003)Google Scholar
  2. 2.
    Korea Dairy Industries Association. Dairy product consumption has increased with the growth of the food service industry: Accessed Oct. 3, 2007.
  3. 3.
    Sanders ME, Huis in’t Veld J. Review: Bringing a probiotic-containing functional food to the market: Microbiological, product, regulatory, and labeling issues. Anton. Int. J. G. Leeuw. 76: 293–315 (1999)CrossRefGoogle Scholar
  4. 4.
    Suh HJ, Kim YS, Kim JM, Lee H. Effect of mulberry extract on the growth of yogurt starter cultures. Korean J. Food Sci. Anim. Resour. 26: 144–147 (2006)Google Scholar
  5. 5.
    Kwon TY, Lee JH. Characterization of the scr gene cluster involved in sucrose utilization in Bifidobacterium longum. Korean J. Microbial. Biotechnol. 32: 99–205 (2004)Google Scholar
  6. 6.
    Gilliland SE, Staley TE, Bush LJ. Importance in bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67: 3045–3051 (1984)Google Scholar
  7. 7.
    Parret AHA, Schoofs G, Proost P, De Mot R. Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J. Bacteriol. 185: 897–908 (2003)CrossRefGoogle Scholar
  8. 8.
    Wilmotte A, Van der Auwera G, de Wachter R. Structure of the 16S ribosomal RNA of the thermophilic Cyanobacterium chlorogloeopsis HTF (Mastigocladus laminosus HTF′) strain PCC7518, and phylogenetic analysis. FEBS Lett. 317: 96–100 (1993)CrossRefGoogle Scholar
  9. 9.
    Sanger F, Nicklen S, Coulson R. DNA sequencing with chain-terminating inhibitors. Biotechnology 24: 104–108 (1992)Google Scholar
  10. 10.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 215: 403–410 (1990)Google Scholar
  11. 11.
    Tagg J, Mcgiven AR. Assay system for bacteriocins. Appl. Environ. Microb. 21: 943–948 (1971)Google Scholar
  12. 12.
    Corcoran BM, Stanton C, Fitzgerald GF, Ross RP. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microb. 71: 3060–3067 (2005)CrossRefGoogle Scholar
  13. 13.
    Greene JD, Klaenhammer TR. Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microb. 60: 4487–4494 (1994)Google Scholar
  14. 14.
    Sugita-Konishi Y, Shibata K, Yun SS, Hara-Kudo Y, Yamaguchi K, Kumagai S. Immune functions of immunoglobulin Y isolated from egg yolk of hens immunized with various infectious bacteria. Biosci. Biotech. Bioch. 60: 886–888 (1996)CrossRefGoogle Scholar
  15. 15.
    Mori K, Yamazaki K, Ishiyama T, Katsumata M, Kobayashi K, Kawai Y, Inoue N, Shinano H. Comparative sequence analysis of the genes coding for 16s rRNA of Lactobacillus casei-related texa. Int. J. Syst. Bacteriol. 47: 54–57 (1997)CrossRefGoogle Scholar
  16. 16.
    Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavolv A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goldstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’sulllivan D, Steele J, Unlu, G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D. Comparative genomics of the lactic acid bacteria. P. Natl. Acad. Sci. USA 103: 15611–15616 (2006)CrossRefGoogle Scholar
  17. 17.
    Naser SM, Hagen KE, Vancanneyt M, Cleewerck I, Swings J, Tompkins TA, Cachat, Priest B. Lactobacillus suntoryeus is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919). Int. J. Syst. Evol. Micr. 56: 355–360 (2006)CrossRefGoogle Scholar
  18. 18.
    Felis GE, Dellaglio F, Mizzi L, Torriani S. Comparative sequence analysis of a recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group. Int. J. Syst. Evol. Micr. 51: 2113–2117 (2001)Google Scholar
  19. 19.
    Collins MD, Phillips BA, Zanoni P. Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. Paracasei, and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Bacteriol. 39: 105–108 (1989)CrossRefGoogle Scholar
  20. 20.
    Dellaglio F, Dicks LMT, Du Toit M, Torriani S. Designation of ATCC 334 in place of ATCC 393 (NCDO 1619) as the neotype strain of Lactobacillus casei subsp. Casei and rejection of the name Lactobacillus paracasei. Int. J. Syst. Bacteriol. 41: 340–342 (1991)CrossRefGoogle Scholar
  21. 21.
    Dicks LMT, DU Plessis EM, Dellaglio F, Lauer E. Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacilllus paracasei. Int. J. Syst. Bacteriol. 46: 337–340 (1996)CrossRefGoogle Scholar
  22. 22.
    Heller KJ. Probiotic bacteria in the fermented foods: Product characteristics and starter organisms. Am. J. Clin. Nutr. 73(suppl): 374S–379S (2001)Google Scholar
  23. 23.
    Fuller R. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365–378 (1989)Google Scholar
  24. 24.
    Vizoso P, Pinto MG, Franz CM, Schillinger U, Holzapfel WH. Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int. J. Food Microbiol. 109: 205–214 (2006)CrossRefGoogle Scholar
  25. 25.
    Charteris WP, Kelly PM, Morelli L, Collins JK. Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Lett. Appl. Microbiol. 26: 333–337 (1998)CrossRefGoogle Scholar
  26. 26.
    Conway PL, Gorbach SL, Goldin BR. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 112–116 (1987)CrossRefGoogle Scholar
  27. 27.
    Huang Y, Adams MC. In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int. J. Food Microbiol. 91: 253–260 (2004)CrossRefGoogle Scholar
  28. 28.
    Dare R, Magee JT, Mathison GE. In vitro studies on the bacteriocidal properties of natural and synthetic gastric juices. J. Med. Microbiol. 5: 395–406 (1972)CrossRefGoogle Scholar
  29. 29.
    Havenaar R, Huis in’t Veld J. Probiotics: A general view. pp. 151–170. In: The Lactic Acid Bacteria in Health and Disease. Wood BJ (ed). Elsevier, New York, NY, USA (1992)Google Scholar
  30. 30.
    Golowczyc MA, Mobilia P, Garrotea GL, Abrahama AG, De Antoni GL. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. Int. J. Food. Microbiol. 118: 264–273 (2007)CrossRefGoogle Scholar
  31. 31.
    Rastall RA, Martin V. Probiotics and symbiotics: Towards the next generation. Curr. Opin. Biotech. 13: 490–496 (2002)CrossRefGoogle Scholar
  32. 32.
    Saito T. Selection of useful probiotic lactic acid bacteria from the Lactobacillus acidophilus group and their applications to functional foods. Anim. Sci. J. 75: 1–13 (2004)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2010

Authors and Affiliations

  • Tae-Suk Song
    • 1
  • Ji-Youn Kim
    • 1
  • Ki-Hwan Kim
    • 1
  • Byung-Moon Jung
    • 2
  • Soong-Seop Yun
    • 2
  • Sung-Sik Yoon
    • 1
    Email author
  1. 1.Department of Life Science and Technology, College of Science and EngineeringYonsei UniversityWonju, GangwonKorea
  2. 2.RsD Center Maeil Dairies Co., Ltd.Pyungtaek, GyeonggiKorea

Personalised recommendations