Advertisement

Assessment of interstitial lung disease in systemic sclerosis using the quantitative CT algorithm CALIPER

  • Alessandro Maria Ferrazza
  • Antonietta Gigante
  • Maria Ludovica Gasperini
  • Rosa Maria Ammendola
  • Gregorino Paone
  • Iacopo Carbone
  • Edoardo RosatoEmail author
Brief Report

Abstract

Interstitial lung disease (ILD) remains a major cause of morbidity and mortality in systemic sclerosis (SSc). Study aim is to characterize and quantify SSc-ILD by using Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER). Secondly, our objective is to evaluate which radiological pattern is predictive of lung function decline at 12 months follow-up. In the prospective study (IRB 5435), 66 SSc patients underwent high-resolution computerized tomography (HRCT) at baseline. HRCT was performed according to standard protocol using a CT 64GE light speed VCT power scanner. CALIPER classified lung parenchyma on volume units. Every volume unit was classified into radiological parenchymal patterns (honeycombing, reticular and ground glass). Pulmonary function tests (PFTs) were performed at baseline and after 12 months of follow-up. Cigarette smoking and other lung diseases unrelated to SSc are exclusion criteria. CALIPER analysis showed normal lung parenchyma 87.4 ± 9.8%, ground glass 2.8 ± 5.3%, reticular 4 ± 5.7%, and honeycombing 1 ± 1%. In multiple regression analysis, FEV1 (p < 0.0001), FVC (p = 0.001), and DLCO (p < 0.0001) measurements at baseline showed a negative correlation with the reticular pattern percentage. At follow-up, DLCO reduction showed a positive correlation (p < 0.001) with the percentage of ground glass pattern (r = 0.33, beta coefficient = 0.51). In the ROC curve analysis, ground glass score is a good predictor (0.75, p = 0.009; 95% CI 0.59–0.91) of DLCO worsening, defined as a decrease of more than 10% of DLCO. Using a cutoff ≥ 4.5 for ground glass score, the RR for DLCO worsening is 6.8 (p < 0.01; 95% CI 1.6–29.2). The results of this study show that CALIPER is useful not only for quantifying lung damage but also for assessing worsening PFTs, but larger studies are needed to confirm these preliminary data.

Key Points

At baseline reticular pattern showed negative correlation with PFTs

At follow-up ground glass pattern predicts worsening of DLCO

CALIPER is a useful to quantify lung damage

Keywords

CALIPER HRCT Interstitial lung disease Pulmonary function tests Systemic sclerosis 

Notes

Compliance with ethical standards

Disclosures

None.

References

  1. 1.
    Adler S, Huscher D, Siegert E, Allanore Y, Czirják L, DelGaldo F et al (2018) EUSTAR co-workers on behalf of the DeSScipher project research group within the EUSTAR network. Systemic sclerosis associated interstitial lung disease - individualized immunosuppressive therapy and course of lung function: results of the EUSTAR group. Arthritis Res Ther 20:17.  https://doi.org/10.1186/s13075-018-1517-z CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Solomon JJ, Olson AL, Fischer A, Bull T, Brown KK, Raghu G (2013) Scleroderma lung disease. Eur Respir Rev 22:6–19.  https://doi.org/10.1183/09059180.00005512 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ariani A, Silva M, Seletti V, Bravi E, Saracco M, Parisi S, de Gennaro F, Idolazzi L, Caramaschi P, Benini C, Bodini FC, Scirè CA, Carrara G, Lumetti F, Alfieri V, Bonati E, Lucchini G, Aiello M, Santilli D, Mozzani F, Imberti D, Michieletti E, Arrigoni E, Delsante G, Pellerito R, Fusaro E, Chetta A, Sverzellati N (2017) Quantitative chest computed tomography is associated with two prediction models of mortality in interstitial lung disease. Rheumatology 56:922–927.  https://doi.org/10.1093/rheumatology/kew480 CrossRefPubMedGoogle Scholar
  4. 4.
    Jacob J, Bartholmai BJ, Rajagopalan S, Kokosi M, Nair A, Karwoski R, Walsh SL, Wells AU, Hansell DM (2017) Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures. Eur Respir J 49:1601011.  https://doi.org/10.1183/13993003.01011-2016 CrossRefPubMedGoogle Scholar
  5. 5.
    Baqir M, Makol A, Osborn TG, Bartholmai BJ, Ryu JH (2017) Mycophenolate mofetil for scleroderma-related interstitial lung disease: a real world experience. PLoS One 12:e0177107.  https://doi.org/10.1371/journal.pone.0177107eCollection 2017 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, Matucci-Cerinic M, Naden RP, Medsger TA Jr, Carreira PE, Riemekasten G, Clements PJ, Denton CP, Distler O, Allanore Y, Furst DE, Gabrielli A, Mayes MD, van Laar J, Seibold JR, Czirjak L, Steen VD, Inanc M, Kowal-Bielecka O, Müller-Ladner U, Valentini G, Veale DJ, Vonk MC, Walker UA, Chung L, Collier DH, Ellen Csuka M, Fessler BJ, Guiducci S, Herrick A, Hsu VM, Jimenez S, Kahaleh B, Merkel PA, Sierakowski S, Silver RM, Simms RW, Varga J, Pope JE (2013) 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 72:1747–1755.  https://doi.org/10.1136/annrheumdis-2013-204424 CrossRefPubMedGoogle Scholar
  7. 7.
    LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, Rowell N, Wollheim F (1998) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205Google Scholar
  8. 8.
    Clements P, Lachenbruch P, Siebold J, White B, Weiner S, Martin R, Weinstein A, Weisman M, Mayes M, Collier D (1995) Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol 22:1281–1285PubMedGoogle Scholar
  9. 9.
    Cutolo M, Sulli A, Secchi ME, Paolino S, Pizzorni C (2006) Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement? Rheumatology 45:43–46CrossRefGoogle Scholar
  10. 10.
    Jacob J, Bartholmai BJ, Rajagopalan S, Kokosi M, Nair A, Karwoski R, Raghunath SM, Walsh SL, Wells AU, Hansell DM (2016) Automated quantitative computed tomography versus visual computed tomography scoring in idiopathic pulmonary fibrosis: validation against pulmonary function. J Thorac Imaging 31:304–311.  https://doi.org/10.1097/RTI.0000000000000220 CrossRefPubMedGoogle Scholar
  11. 11.
    Hu S, Hoffman EA, Reinhardt JM (2001) Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 20:490–498CrossRefGoogle Scholar
  12. 12.
    Bartholmai BJ, Raghunath S, Karwoski RA, Moua T, Rajagopalan S, Maldonado F, Decker PA, Robb RA (2013) Quantitative computed tomography imaging of interstitial lung diseases. J Thorac Imaging 28:298–307.  https://doi.org/10.1097/RTI.0b013e3182a21969 CrossRefPubMedGoogle Scholar
  13. 13.
    Shikata H, McLennan G, Hoffman EA, Sonka M (2009) Segmentation of pulmonary vascular trees from thoracic 3D CT images. Int J Biomed Imaging 2009:636240.  https://doi.org/10.1155/2009/636240 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, van der Grinten C, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J, ATS/ERS Task Force (2005) ATS/ERS task force general considerations for lung function testing. Eur Respir J 26:153–161CrossRefGoogle Scholar
  15. 15.
    Aisen AM, Broderick LS, Winer-Muram H, Brodley CE, Kak AC, Pavlopoulou C, Dy J, Shyu CR, Marchiori A (2003) Automated storage and retrieval of thin-section CT images to assist diagnosis: system description and preliminary assessment. Radiology 228:265–270CrossRefGoogle Scholar
  16. 16.
    Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, Galbán S, Rehemtulla A, Kazerooni EA, Martinez FJ, Ross BD (2012) Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18:1711–1715.  https://doi.org/10.1038/nm.2971 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Goldin JG, Lynch DA, Strollo DC, Suh RD, Schraufnagel DE, Clements PJ, Elashoff RM, Furst DE, Vasunilashorn S, McNitt-Gray M, Brown MS, Roth MD, Tashkin DP, Scleroderma Lung Study Research Group (2008) Scleroderma lung study research group. High-resolution CT scan findings in patients with symptomatic scleroderma-related interstitial lung disease. Chest 134:358–367.  https://doi.org/10.1378/chest.07-2444 CrossRefPubMedGoogle Scholar
  18. 18.
    Goh NS, Desai SR, Veeraraghavan S, Hansell DM, Copley SJ, Maher TM, Corte TJ, Sander CR, Ratoff J, Devaraj A, Bozovic G, Denton CP, Black CM, du Bois RM, Wells AU (2008) Interstitial lung disease in systemic sclerosis a simple staging system. Am J Respir Crit Care Med 177:1248–1254.  https://doi.org/10.1164/rccm.200706-877OC CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2020

Authors and Affiliations

  1. 1.Department of Radiological, Oncological and Pathological SciencesSapienza University of RomeRomeItaly
  2. 2.Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
  3. 3.Department of Cardiovascular and Respiratory SciencesSapienza University of RomeRomeItaly

Personalised recommendations