Advertisement

Leptin: an unappreciated key player in SLE

  • Qihang Yuan
  • Haifeng Chen
  • Xia LiEmail author
  • Jing WeiEmail author
Review Article

Abstract

Leptin is the forerunner of the adipokine superfamily and plays a key role in regulating energy expenditure and neuroendocrine function. Researches into leptin put emphasize not only on the metabolic role but also its immunoregulatory effect on immune response through immunocyte activation and cytokine secretion. Leptin acts on receptors that are widespread throughout the body and that are expressed across many tissue types. As a consequence, the abnormal expression of leptin has been found to correlate with a number of diseases, including cancers, autoimmune diseases, and cardiovascular diseases. The significance of leptin in the development of autoimmune diseases is becoming increasingly prominent. Systemic lupus erythematosus (SLE) is a severe atypical autoimmune disease that causes damage to multiple organ systems. It is characterised by the following: impaired clearance of apoptotic cells, loss of tolerance to self-antigens, aberrant activation of T cells and B cells, and chronic inflammation. The heightened immunocyte response in SLE means that these physiological systems are particularly vulnerable to regulation by leptin in addition to being of great significance to the research field. Our current review provides insight into the regulatory roles that leptin plays on immune effector cells in SLE.

Keywords

Immunocytes Leptin Systemic lupus erythematosus 

Notes

Authors’ contribution

The authors alone are responsible for the content and writing of the paper. Qihang Yuan contributed to the design of the study, collection and interpretation of data, and drafting and revising the manuscript. Haifeng Chen was responsible for the interpretation of data and drafting the manuscript. Xia Li and Jing Wei conceived the study and reviewed/edited the manuscript.

Funding information

This work was supported by the National Natural Science Foundation of China (grant nos. 81671606, 81501345), Natural Science Foundation of Liaoning Province (grant no. 20180550789), College Scientific Research Project of Education Department of Liaoning Province (grant no. LQ2017007), and Dalian Medical University Foundation for Teaching Reform Project of Undergraduate Innovative Talents Training (grant no. 111507010322).

Compliance with ethical standards

Disclosures

None.

Ethical approval

Submitted paper is a review of relevant literature. This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Zabeau L, Wauman J, Dam J, Van Lint S, Burg E, De Geest J, Rogge E, Silva A, Jockers R, Tavernier J (2019) A novel leptin receptor antagonist uncouples leptin’s metabolic and immune functions. Cell Mol Life Sci 76(6):1201–1214.  https://doi.org/10.1007/s00018-019-03004-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Navarini L, Margiotta DPE, Vadacca M, Afeltra A (2018) Leptin in autoimmune mechanisms of systemic rheumatic diseases. Cancer Lett 423:139–146.  https://doi.org/10.1016/j.canlet.2018.03.011 CrossRefPubMedGoogle Scholar
  3. 3.
    Matarese G, Carrieri PB, La Cava A, Perna F, Sanna V, De Rosa V, Aufiero D, Fontana S, Zappacosta S (2005) Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25(+) regulatory T cells. P Natl Acad Sci USA 102(14):5150–5155.  https://doi.org/10.1073/pnas.0408995102 CrossRefGoogle Scholar
  4. 4.
    Sari I, Demir T, Kozaci LD, Akar S, Kavak T, Birlik M, Onen F, Akkoc N (2007) Body composition, insulin, and leptin levels in patients with ankylosing spondylitis. Clin Rheumatol 26(9):1427–1432.  https://doi.org/10.1007/s10067-006-0509-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Choi MY, Flood K, Bernatsky S, Ramsey-Goldman R, Clarke AE (2017) A review on SLE and malignancy. Best Pract Res Clin Rheumatol 31(3):373–396.  https://doi.org/10.1016/j.berh.2017.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mohamed A, Chen Y, Wu H, Liao J, Cheng B, Lu Q (2019) Therapeutic advances in the treatment of SLE. Int Immunopharmacol 72:218–223.  https://doi.org/10.1016/j.intimp.2019.03.010 CrossRefPubMedGoogle Scholar
  7. 7.
    Xu WD, Zhang M, Zhang YJ, Liu SS, Pan HF, Ye DQ (2014) Association between leptin and systemic lupus erythematosus. Rheumatol Int 34(4):559–563.  https://doi.org/10.1007/s00296-013-2774-4 CrossRefPubMedGoogle Scholar
  8. 8.
    Dammacco R (2018) Systemic lupus erythematosus and ocular involvement: an overview. Clin Exp Med 18(2):135–149.  https://doi.org/10.1007/s10238-017-0479-9 CrossRefPubMedGoogle Scholar
  9. 9.
    Pisetsky DS (2008) The role of innate immunity in the induction of autoimmunity. Autoimmun Rev 8(1):69–72.  https://doi.org/10.1016/j.autrev.2008.07.028 CrossRefPubMedGoogle Scholar
  10. 10.
    Weidenbusch M, Kulkarni OP, Anders HJ (2017) The innate immune system in human systemic lupus erythematosus. Clinical science (London, England: 1979) 131(8):625–634.  https://doi.org/10.1042/cs20160415 CrossRefGoogle Scholar
  11. 11.
    Teh P, Zakhary B, Sandhu VK (2019) The impact of obesity on SLE disease activity: findings from the Southern California Lupus Registry (SCOLR). Clin Rheumatol 38(2):597–600.  https://doi.org/10.1007/s10067-018-4336-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Diaz-Rizo V, Bonilla-Lara D, Gonzalez-Lopez L, Sanchez-Mosco D, Fajardo-Robledo NS, Perez-Guerrero EE, Rodriguez-Jimenez NA, Saldana-Cruz AM, Vazquez-Villegas ML, Gomez-Banuelos E, Vazquez-Del Mercado M, Cardona-Munoz EG, Cardona-Muller D, Trujillo X, Huerta M, Salazar-Paramo M, Gamez-Nava JI (2017) Serum levels of adiponectin and leptin as biomarkers of proteinuria in lupus nephritis. PLoS One 12(9):e0184056.  https://doi.org/10.1371/journal.pone.0184056 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Barranco C (2016) Systemic lupus erythematosus: leptin linked to SLE. Nat Rev Rheumatol 12(11):623.  https://doi.org/10.1038/nrrheum.2016.161 CrossRefPubMedGoogle Scholar
  14. 14.
    Lourenco EV, Liu A, Matarese G, La Cava A (2016) Leptin promotes systemic lupus erythematosus by increasing autoantibody production and inhibiting immune regulation. Proc Natl Acad Sci U S A 113(38):10637–10642.  https://doi.org/10.1073/pnas.1607101113 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mohammed SF, Abdalla MA, Ismaeil WM, Sheta MM (2018) Serum leptin in systemic lupus erythematosus patients: its correlation with disease activity and some disease parameters. The Egyptian Rheumatologist 40(1):23–27.  https://doi.org/10.1016/j.ejr.2017.06.005 CrossRefGoogle Scholar
  16. 16.
    Abella V, Scotece M, Conde J, Pino J, Gonzalez-Gay MA, Gomez-Reino JJ, Mera A, Lago F, Gomez R, Gualillo O (2017) Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol 13(2):100–109.  https://doi.org/10.1038/nrrheum.2016.209 CrossRefPubMedGoogle Scholar
  17. 17.
    La Cava A (2017) Leptin in inflammation and autoimmunity. Cytokine 98:51–58.  https://doi.org/10.1016/j.cyto.2016.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Procaccini C, La Rocca C, Carbone F, De Rosa V, Galgani M, Matarese G (2017) Leptin as immune mediator: interaction between neuroendocrine and immune system. Dev Comp Immunol 66:120–129.  https://doi.org/10.1016/j.dci.2016.06.006 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432.  https://doi.org/10.1038/372425a0 CrossRefPubMedGoogle Scholar
  20. 20.
    Munzberg H, Morrison CD (2015) Structure, production and signaling of leptin. Metabolism 64(1):13–23.  https://doi.org/10.1016/j.metabol.2014.09.010 CrossRefPubMedGoogle Scholar
  21. 21.
    Perez-Perez A, Vilarino-Garcia T, Fernandez-Riejos P, Martin-Gonzalez J, Segura-Egea JJ, Sanchez-Margalet V (2017) Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev 35:71–84.  https://doi.org/10.1016/j.cytogfr.2017.03.001 CrossRefPubMedGoogle Scholar
  22. 22.
    Wasim M, Awan FR, Najam SS, Khan AR, Khan HN (2016) Role of leptin deficiency, inefficiency, and leptin receptors in obesity. Biochem Genet 54(5):565–572.  https://doi.org/10.1007/s10528-016-9751-z CrossRefPubMedGoogle Scholar
  23. 23.
    Akther A, Khan KH, Begum M, Parveen S, Kaiser MS, Chowdhury AZ (2009) Leptin: a mysterious hormone; its physiology and pathophysiology. Mymensingh Med J 18(1 Suppl):S140–S144PubMedGoogle Scholar
  24. 24.
    Crujeiras AB, Carreira MC, Cabia B, Andrade S, Amil M, Casanueva FF (2015) Leptin resistance in obesity: an epigenetic landscape. Life Sci 140:57–63.  https://doi.org/10.1016/j.lfs.2015.05.003 CrossRefGoogle Scholar
  25. 25.
    Gulkesen A, Akgol G, Tuncer T, Kal GA, Telo S, Poyraz AK, Kaya A (2016) Relationship between leptin and neopterin levels and disease activation parameters in patients with rheumatoid arthritis. Arch Rheumatol 31(4):333–339.  https://doi.org/10.5606/ArchRheumatol.2016.5893 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jenks MZ, Fairfield HE, Johnson EC, Morrison RF, Muday GK (2017) Sex steroid hormones regulate leptin transcript accumulation and protein secretion in 3T3-L1 cells. Sci Rep 7(1):8232.  https://doi.org/10.1038/s41598-017-07473-5 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    MacIver NJ, Thomas SM, Green CL, Worley G (2016) Increased leptin levels correlate with thyroid autoantibodies in nonobese males. Clin Endocrinol 85(1):116–121.  https://doi.org/10.1111/cen.12963 CrossRefGoogle Scholar
  28. 28.
    Li HM, Zhang TP, Leng RX, Li XP, Wang DG, Li XM, Ye DQ, Pan HF (2017) Association of leptin and leptin receptor gene polymorphisms with systemic lupus erythematosus in a Chinese population. J Cell Mol Med 21(9):1732–1741.  https://doi.org/10.1111/jcmm.13093 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Myers MG, Cowley MA, Munzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556.  https://doi.org/10.1146/annurev.physiol.70.113006.100707 CrossRefPubMedGoogle Scholar
  30. 30.
    Tsiotra PC, Boutati E, Dimitriadis G, Raptis SA (2013) High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells. Biomed Res Int 2013:487081.  https://doi.org/10.1155/2013/487081 CrossRefPubMedGoogle Scholar
  31. 31.
    Jog N, Caricchio R, Cohen P (2014) The neutrophil: an underappreciated but key player in SLE pathogenesis. Curr Immunol Rev 9(4):222–230.  https://doi.org/10.2174/1573395510666140301005421 CrossRefGoogle Scholar
  32. 32.
    Li SF, Li X (2016) Leptin in normal physiology and leptin resistance. Sci Bull 61(19):1480–1488.  https://doi.org/10.1007/s11434-015-0951-4 CrossRefGoogle Scholar
  33. 33.
    Wada N, Hirako S, Takenoya F, Kageyama H, Okabe M, Shioda S (2014) Leptin and its receptors. J Chem Neuroanat 61–62:191–199.  https://doi.org/10.1016/j.jchemneu.2014.09.002 CrossRefPubMedGoogle Scholar
  34. 34.
    Schaab M, Kratzsch J (2015) The soluble leptin receptor. Best Pract Res Clin Endocrinol Metab 29(5):661–670.  https://doi.org/10.1016/j.beem.2015.08.002 CrossRefPubMedGoogle Scholar
  35. 35.
    Uddin S, Mohammad RM (2016) Role of leptin and leptin receptors in hematological malignancies. Leuk Lymphoma 57(1):10–16.  https://doi.org/10.3109/10428194.2015.1063145 CrossRefPubMedGoogle Scholar
  36. 36.
    Mullen M, Gonzalez-Perez RR (2016) Leptin-induced JAK/STAT signaling and cancer growth. Vaccines (Basel) 4(3).  https://doi.org/10.3390/vaccines4030026 CrossRefGoogle Scholar
  37. 37.
    Park HK, Ahima RS (2014) Leptin signaling. F1000Prime Rep 6:73.  https://doi.org/10.12703/P6-73 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gavello D, Carbone E, Carabelli V (2016) Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential. Channels 10(4):282–296.  https://doi.org/10.1080/19336950.2016.1164373 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li F, Yang Y, Zhu X, Huang L, Xu J (2015) Macrophage polarization modulates development of systemic lupus erythematosus. Cell Physiol Biochem 37(4):1279–1288.  https://doi.org/10.1159/000430251 CrossRefPubMedGoogle Scholar
  40. 40.
    Benso L (2016) Differential function of in vitro generated macrophages from systemic lupus erythematosus and non-diseased peripheral blood mononuclear cells. Harveard Extension School Master’s thesisGoogle Scholar
  41. 41.
    Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48(10):2888–2897.  https://doi.org/10.1002/art.11237 CrossRefPubMedGoogle Scholar
  42. 42.
    Munoz LE, Lauber K, Schiller M, Manfredi AA, Schett G, Voll RE, Herrmann M (2010) The role of incomplete clearance of apoptotic cells in the etiology and pathogenesis of SLE. Z Rheumatol 69(2):152, 154–152, 156.  https://doi.org/10.1007/s00393-009-0603-7 CrossRefGoogle Scholar
  43. 43.
    Mahajan A, Herrmann M, Munoz LE (2016) Clearance deficiency and cell death pathways: a model for the pathogenesis of SLE. Front Immunol 7:35.  https://doi.org/10.3389/fimmu.2016.00035 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    de Zubiria SA, Herrera-Diaz C (2012) Lupus nephritis: an overview of recent findings. Autoimmune Dis 2012:849684.  https://doi.org/10.1155/2012/849684 CrossRefGoogle Scholar
  45. 45.
    Byrne JC, Ni Gabhann J, Lazzari E, Mahony R, Smith S, Stacey K, Wynne C, Jefferies CA (2012) Genetics of SLE: functional relevance for monocytes/macrophages in disease. Clin Dev Immunol 2012:582352.  https://doi.org/10.1155/2012/582352 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Katsiari CG, Liossis SN, Sfikakis PP (2010) The pathophysiologic role of monocytes and macrophages in systemic lupus erythematosus: a reappraisal. Semin Arthritis Rheum 39(6):491–503.  https://doi.org/10.1016/j.semarthrit.2008.11.002 CrossRefPubMedGoogle Scholar
  47. 47.
    Su DL, Lu ZM, Shen MN, Li X, Sun LY (2012) Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE. J Biomed Biotechnol 2012:347141.  https://doi.org/10.1155/2012/347141 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Macauley MS, Crocker PR, Paulson JC (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14(10):653–666.  https://doi.org/10.1038/nri3737 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Acedo SC, Gambero S, Cunha FG, Lorand-Metze I, Gambero A (2013) Participation of leptin in the determination of the macrophage phenotype: an additional role in adipocyte and macrophage crosstalk. In Vitro Cell Dev Biol Anim 49(6):473–478.  https://doi.org/10.1007/s11626-013-9629-x CrossRefPubMedGoogle Scholar
  50. 50.
    Conde J, Scotece M, Abella V, Lopez V, Pino J, Gomez-Reino JJ, Gualillo O (2014) An update on leptin as immunomodulator. Expert Rev Clin Immunol 10(9):1165–1170.  https://doi.org/10.1586/1744666X.2014.942289 CrossRefPubMedGoogle Scholar
  51. 51.
    Liu L, Allman WR, Coleman AS, Takeda K, Lin TL, Akkoyunlu M (2018) Delayed onset of autoreactive antibody production and M2-skewed macrophages contribute to improved survival of TACI deficient MRL-Fas/Lpr mouse. Sci Rep 8(1):1308.  https://doi.org/10.1038/s41598-018-19827-8 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Amarilyo G, Iikuni N, Liu A, Matarese G, La Cava A (2014) Leptin enhances availability of apoptotic cell-derived self-antigen in systemic lupus erythematosus. PLoS One 9(11):e112826.  https://doi.org/10.1371/journal.pone.0112826 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jiang JX, Mikami K, Shah VH, Torok NJ (2008) Leptin induces phagocytosis of apoptotic bodies by hepatic stellate cells via a Rho guanosine triphosphatase-dependent mechanism. Hepatology 48(5):1497–1505.  https://doi.org/10.1002/hep.22515 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jaedicke KM, Roythorne A, Padget K, Todryk S, Preshaw PM, Taylor JJ (2013) Leptin up-regulates TLR2 in human monocytes. J Leukoc Biol 93(4):561–571.  https://doi.org/10.1189/jlb.1211606 CrossRefPubMedGoogle Scholar
  55. 55.
    Liu F, Li X, Yue H, Ji J, You M, Ding L, Fan H, Hou Y (2017) TLR-induced SMPD3 defects enhance inflammatory response of B cell and macrophage in the pathogenesis of SLE. Scand J Immunol 86(5):377–388.  https://doi.org/10.1111/sji.12611 CrossRefPubMedGoogle Scholar
  56. 56.
    Murata T, Asanuma K, Ara N, Iijima K, Hatta W, Hamada S, Asano N, Koike T, Imatani A, Masamune A, Shimosegawa T (2018) Leptin aggravates reflux esophagitis by increasing tissue levels of macrophage migration inhibitory factor in rats. Tohoku J Exp Med 245(1):45–53.  https://doi.org/10.1620/tjem.245.45 CrossRefPubMedGoogle Scholar
  57. 57.
    Zarkesh-Esfahani H, Pockley G, Metcalfe RA, Bidlingmaier M, Wu Z, Ajami A, Weetman AP, Strasburger CJ, Ross RJ (2001) High-dose leptin activates human leukocytes via receptor expression on monocytes. J Immunol 167(8):4593–4599CrossRefGoogle Scholar
  58. 58.
    Naylor C, Petri WA Jr (2016) Leptin regulation of immune responses. Trends Mol Med 22(2):88–98.  https://doi.org/10.1016/j.molmed.2015.12.001 CrossRefPubMedGoogle Scholar
  59. 59.
    Gabay C, Dreyer M, Pellegrinelli N, Chicheportiche R, Meier CA (2001) Leptin directly induces the secretion of interleukin 1 receptor antagonist in human monocytes. J Clin Endocrinol Metab 86(2):783–791.  https://doi.org/10.1210/jcem.86.2.7245 CrossRefPubMedGoogle Scholar
  60. 60.
    Vaughan T, Li L (2010) Molecular mechanism underlying the inflammatory complication of leptin in macrophages. Mol Immunol 47(15):2515–2518.  https://doi.org/10.1016/j.molimm.2010.06.006 CrossRefPubMedGoogle Scholar
  61. 61.
    Yang ZX, Zhang ZY, Lin F, Ren YP, Liu DH, Zhong RQ, Liang Y (2017) Comparisons of neutrophil-, monocyte-, eosinophil-, and basophil- lymphocyte ratios among various systemic autoimmune rheumatic diseases. Apmis 125(10):863–871.  https://doi.org/10.1111/apm.12722 CrossRefPubMedGoogle Scholar
  62. 62.
    Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6):711–723.  https://doi.org/10.1084/jem.20021553 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, Endres S, Hartmann G (2005) Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol 174(7):4043–4050CrossRefGoogle Scholar
  64. 64.
    Green NM, Laws A, Kiefer K, Busconi L, Kim YM, Brinkmann MM, Trail EH, Yasuda K, Christensen SR, Shlomchik MJ, Vogel S, Connor JH, Ploegh H, Eilat D, Rifkin IR, van Seventer JM, Marshak-Rothstein A (2009) Murine B cell response to TLR7 ligands depends on an IFN-beta feedback loop. J Immunol 183(3):1569–1576.  https://doi.org/10.4049/jimmunol.0803899 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Han JH, Umiker BR, Kazimirova AA, Fray M, Korgaonkar P, Selsing E, Imanishi-Kari T (2014) Expression of an anti-RNA autoantibody in a mouse model of SLE increases neutrophil and monocyte numbers as well as IFN-I expression. Eur J Immunol 44(1):215–226.  https://doi.org/10.1002/eji.201343714 CrossRefPubMedGoogle Scholar
  66. 66.
    Courtney PA, Crockard AD, Williamson K, Irvine AE, Kennedy RJ, Bell AL (1999) Increased apoptotic peripheral blood neutrophils in systemic lupus erythematosus: relations with disease activity, antibodies to double stranded DNA, and neutropenia. Ann Rheum Dis 58(5):309–314CrossRefGoogle Scholar
  67. 67.
    Guo X, Fang X, He G, Zaman MH, Fei X, Qiao W, Deng GM (2018) The role of neutrophils in skin damage induced by tissue-deposited lupus IgG. Immunology.  https://doi.org/10.1111/imm.12908 CrossRefGoogle Scholar
  68. 68.
    van Dam LS, Rabelink TJ, van Kooten C, Teng YKO (2019) Clinical implications of excessive neutrophil extracellular trap formation in renal autoimmune diseases. Kidney Int Rep 4(2):196–211.  https://doi.org/10.1016/j.ekir.2018.11.005 CrossRefPubMedGoogle Scholar
  69. 69.
    Azzouz L, Cherry A, Riedl M, Khan M, Pluthero FG, Kahr WHA, Palaniyar N, Licht C (2018) Relative antibacterial functions of complement and NETs: NETs trap and complement effectively kills bacteria. Mol Immunol 97:71–81.  https://doi.org/10.1016/j.molimm.2018.02.019 CrossRefPubMedGoogle Scholar
  70. 70.
    Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden Berghe T (2011) Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ 18(4):581–588.  https://doi.org/10.1038/cdd.2011.1 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chen J, Zeng W, Pan W, Peng C, Zhang J, Su J, Long W, Zhao H, Zuo X, Xie X, Wu J, Nie L, Zhao HY, Wei HJ, Chen X (2018) Symptoms of systemic lupus erythematosus are diagnosed in leptin transgenic pigs. PLoS Biol 16(8):e2005354.  https://doi.org/10.1371/journal.pbio.2005354 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Zarkesh-Esfahani H, Pockley AG, Wu Z, Hellewell PG, Weetman AP, Ross RJ (2004) Leptin indirectly activates human neutrophils via induction of TNF-alpha. J Immunol 172(3):1809–1814CrossRefGoogle Scholar
  73. 73.
    Santos FM, Telles RW, Lanna CC, Teixeira AL Jr, Miranda AS, Rocha NP, Ribeiro AL (2017) Adipokines, tumor necrosis factor and its receptors in female patients with systemic lupus erythematosus. Lupus 26(1):10–16.  https://doi.org/10.1177/0961203316646463 CrossRefPubMedGoogle Scholar
  74. 74.
    Krysiak R, Handzlik-Orlik G, Okopien B (2012) The role of adipokines in connective tissue diseases. Eur J Nutr 51(5):513–528.  https://doi.org/10.1007/s00394-012-0370-0 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Al-Rashed F, Ahmad Z, Iskandar MA, Tuomilehto J, Al-Mulla F, Ahmad R (2019) TNF-alpha induces a pro-inflammatory phenotypic shift in monocytes through ACSL1: relevance to metabolic inflammation. Cell Physiol Biochem 52(3):397–407.  https://doi.org/10.33594/000000028 CrossRefPubMedGoogle Scholar
  76. 76.
    Locker F, Lang AA, Koller A, Lang R, Bianchini R, Kofler B (2015) Galanin modulates human and murine neutrophil activation in vitro. Acta Physiol (Oxford) 213(3):595–602.  https://doi.org/10.1111/apha.12444 CrossRefGoogle Scholar
  77. 77.
    Lakschevitz FS, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M (2016) Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res 342(2):200–209.  https://doi.org/10.1016/j.yexcr.2016.03.007 CrossRefPubMedGoogle Scholar
  78. 78.
    Lee KH, Kronbichler A, Park DD, Park Y, Moon H, Kim H, Choi JH, Choi Y, Shim S, Lyu IS, Yun BH, Han Y, Lee D, Lee SY, Yoo BH, Lee KH, Kim TL, Kim H, Shim JS, Nam W, So H, Choi S, Lee S, Shin JI (2017) Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev 16(11):1160–1173.  https://doi.org/10.1016/j.autrev.2017.09.012 CrossRefPubMedGoogle Scholar
  79. 79.
    Souza-Almeida G, D’Avila H, Almeida PE, Luna-Gomes T, Liechocki S, Walzog B, Hepper I, Castro-Faria-Neto HC, Bozza PT, Bandeira-Melo C, Maya-Monteiro CM (2018) Leptin mediates in vivo neutrophil migration: involvement of tumor necrosis factor-alpha and CXCL1. Front Immunol 9:111.  https://doi.org/10.3389/fimmu.2018.00111 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Frasca D, Blomberg BB (2017) Adipose tissue inflammation induces B cell inflammation and decreases B cell function in aging. Front Immunol 8:1003.  https://doi.org/10.3389/fimmu.2017.01003 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Amarilyo G, Iikuni N, Shi FD, Liu A, Matarese G, La Cava A (2013) Leptin promotes lupus T-cell autoimmunity. Clin Immunol 149(3):530–533.  https://doi.org/10.1016/j.clim.2013.09.002 CrossRefPubMedGoogle Scholar
  82. 82.
    La Cava A (2009) Lupus and T cells. Lupus 18(3):196–201.  https://doi.org/10.1177/0961203308098191 CrossRefPubMedGoogle Scholar
  83. 83.
    Chen M, Chen X, Wan Q (2018) Altered frequency of Th17 and Treg cells in new-onset systemic lupus erythematosus patients. Eur J Clin Investig 48(11):e13012.  https://doi.org/10.1111/eci.13012 CrossRefGoogle Scholar
  84. 84.
    An N, Chen Y, Wang C, Yang C, Wu ZH, Xue J, Ye L, Wang S, Liu HF, Pan Q (2017) Chloroquine autophagic inhibition rebalances Th17/Treg-mediated immunity and ameliorates systemic lupus erythematosus. Cell Physiol Biochem 44(1):412–422.  https://doi.org/10.1159/000484955 CrossRefPubMedGoogle Scholar
  85. 85.
    Lopez P, de Paz B, Rodriguez-Carrio J, Hevia A, Sanchez B, Margolles A, Suarez A (2016) Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep 6:24072.  https://doi.org/10.1038/srep24072 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Koga T, Ichinose K, Tsokos GC (2017) T cells and IL-17 in lupus nephritis. Clin Immunol 185:95–99.  https://doi.org/10.1016/j.clim.2016.04.010 CrossRefPubMedGoogle Scholar
  87. 87.
    Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T (2017) The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediat Inflamm 2017:3908061.  https://doi.org/10.1155/2017/3908061 CrossRefGoogle Scholar
  88. 88.
    Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, Yi J, Guentert T, Tousson A, Stanus AL, Le TVL, Lorenz RG, Xu H, Kolls JK, Carter RH, Chaplin DD, Williams RW, Mountz JD (2008) Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 9(2):166–175.  https://doi.org/10.1038/ni1552 CrossRefPubMedGoogle Scholar
  89. 89.
    De la Cruz-Mosso U, Garcia-Iglesias T, Bucala R, Estrada-Garcia I, Gonzalez-Lopez L, Cerpa-Cruz S, Parra-Rojas I, Gamez-Nava JI, Perez-Guerrero EE, Munoz-Valle JF (2018) MIF promotes a differential Th1/Th2/Th17 inflammatory response in human primary cell cultures: predominance of Th17 cytokine profile in PBMC from healthy subjects and increase of IL-6 and TNF-alpha in PBMC from active SLE patients. Cell Immunol 324:42–49.  https://doi.org/10.1016/j.cellimm.2017.12.010 CrossRefPubMedGoogle Scholar
  90. 90.
    Luzina IG, Atamas SP, Storrer CE, daSilva LC, Kelsoe G, Papadimitriou JC, Handwerger BS (2001) Spontaneous formation of germinal centers in autoimmune mice. J Leukoc Biol 70(4):578–584PubMedGoogle Scholar
  91. 91.
    Nordstrom E, Abedi-Valugerdi M, Moller E (2000) Longevity of immune complexes and abnormal germinal centre formation in NZB mice. Scand J Immunol 52(5):477–482CrossRefGoogle Scholar
  92. 92.
    Ferretti E, Ponzoni M, Doglioni C, Pistoia V (2016) IL-17 superfamily cytokines modulate normal germinal center B cell migration. J Leukoc Biol 100(5):913–918.  https://doi.org/10.1189/jlb.1VMR0216-096RR CrossRefPubMedGoogle Scholar
  93. 93.
    Pin RH, Reinblatt M, Fong Y (2004) Employing tumor hypoxia to enhance oncolytic viral therapy in breast cancer. Surgery 136(2):199–204.  https://doi.org/10.1016/j.surg.2004.04.016 CrossRefPubMedGoogle Scholar
  94. 94.
    Shi GX, Harrison K, Wilson GL, Moratz C, Kehrl JH (2002) RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J Immunol 169(5):2507–2515CrossRefGoogle Scholar
  95. 95.
    Terrier B, Costedoat-Chalumeau N, Garrido M, Geri G, Rosenzwajg M, Musset L, Klatzmann D, Saadoun D, Cacoub P (2012) Interleukin 21 correlates with T cell and B cell subset alterations in systemic lupus erythematosus. J Rheumatol 39(9):1819–1828.  https://doi.org/10.3899/jrheum.120468 CrossRefPubMedGoogle Scholar
  96. 96.
    Kuchen S, Robbins R, Sims GP, Sheng C, Phillips TM, Lipsky PE, Ettinger R (2007) Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol 179(9):5886–5896.  https://doi.org/10.4049/jimmunol.179.9.5886 CrossRefPubMedGoogle Scholar
  97. 97.
    Nakou M, Papadimitraki E, Fanouriakis A, Bertsias G, Choulaki C, Goulidaki N, Sidiropoulos P, Boumpas D (2013) Interleukin-21 is increased in active systemic lupus erythematosus patients and contributes to the generation of plasma B cells. Clin Exp Rheumatol 31(2):172–179PubMedGoogle Scholar
  98. 98.
    Rodriguez-Carrio J, Lopez P, Alperi-Lopez M, Caminal-Montero L, Ballina-Garcia FJ, Suarez A (2018) IRF4 and IRGs delineate clinically relevant gene expression signatures in systemic lupus erythematosus and rheumatoid arthritis. Front Immunol 9:3085.  https://doi.org/10.3389/fimmu.2018.03085 CrossRefPubMedGoogle Scholar
  99. 99.
    Huber M, Brüstle A, Reinhard K, Guralnik A, Walter G, Mahiny A, von Löw E, Lohoff M (2008) IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17. Proc Natl Acad Sci U S A 105(52):20846–20851.  https://doi.org/10.1073/pnas.0809077106 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Rozo C, Chinenov Y, Maharaj RK, Gupta S, Leuenberger L, Kirou KA, Bykerk VP, Goodman SM, Salmon JE, Pernis AB (2017) Targeting the RhoA-ROCK pathway to reverse T-cell dysfunction in SLE. Ann Rheum Dis 76(4):740–747.  https://doi.org/10.1136/annrheumdis-2016-209850 CrossRefPubMedGoogle Scholar
  101. 101.
    Xia LP, Li BF, Shen H, Lu J (2015) Interleukin-27 and interleukin-23 in patients with systemic lupus erythematosus: possible role in lupus nephritis. Scand J Rheumatol 44(3):200–205.  https://doi.org/10.3109/03009742.2014.962080 CrossRefPubMedGoogle Scholar
  102. 102.
    Mok MY, Wu HJ, Lo Y, Lau CS (2010) The relation of interleukin 17 (IL-17) and IL-23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus. J Rheumatol 37(10):2046–2052.  https://doi.org/10.3899/jrheum.100293 CrossRefPubMedGoogle Scholar
  103. 103.
    Dai H, He F, Tsokos GC, Kyttaris VC (2017) IL-23 limits the production of IL-2 and promotes autoimmunity in lupus. J Immunol 199(3):903–910.  https://doi.org/10.4049/jimmunol.1700418 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Reis BS, Lee K, Fanok MH, Mascaraque C, Amoury M, Cohn LB, Rogoz A, Dallner OS, Moraes-Vieira PM, Domingos AI, Mucida D (2015) Leptin receptor signaling in T cells is required for Th17 differentiation. J Immunol 194(11):5253–5260.  https://doi.org/10.4049/jimmunol.1402996 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Gerriets VA, Danzaki K, Kishton RJ, Eisner W, Nichols AG, Saucillo DC, Shinohara ML, MacIver NJ (2016) Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur J Immunol 46(8):1970–1983.  https://doi.org/10.1002/eji.201545861 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Urushima H, Fujimoto M, Mishima T, Ohkawara T, Honda H, Lee H, Kawahata H, Serada S, Naka T (2017) Leucine-rich alpha 2 glycoprotein promotes Th17 differentiation and collagen-induced arthritis in mice through enhancement of TGF-beta-Smad2 signaling in naive helper T cells. Arthritis Res Ther 19(1):137.  https://doi.org/10.1186/s13075-017-1349-2 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Chuang HC, Sheu WH, Lin YT, Tsai CY, Yang CY, Cheng YJ, Huang PY, Li JP, Chiu LL, Wang X, Xie M, Schneider MD, Tan TH (2014) HGK/MAP4K4 deficiency induces TRAF2 stabilization and Th17 differentiation leading to insulin resistance. Nat Commun 5:4602.  https://doi.org/10.1038/ncomms5602 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Deng J, Liu Y, Yang M, Wang S, Zhang M, Wang X, Ko KH, Hua Z, Sun L, Cao X, Lu L (2012) Leptin exacerbates collagen-induced arthritis via enhancement of Th17 cell response. Arthritis Rheum 64(11):3564–3573.  https://doi.org/10.1002/art.34637 CrossRefPubMedGoogle Scholar
  109. 109.
    Yu Y, Liu Y, Shi FD, Zou H, Matarese G, La Cava A (2013) Cutting edge: leptin-induced RORgammat expression in CD4+ T cells promotes Th17 responses in systemic lupus erythematosus. J Immunol 190(7):3054–3058.  https://doi.org/10.4049/jimmunol.1203275 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146(5):772–784.  https://doi.org/10.1016/j.cell.2011.07.033 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Martin JC, Baeten DL, Josien R (2014) Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clin Immunol 154(1):1–12.  https://doi.org/10.1016/j.clim.2014.05.004 CrossRefPubMedGoogle Scholar
  112. 112.
    Sha Y, Markovic-Plese S (2016) Activated IL-1RI signaling pathway induces Th17 cell differentiation via interferon regulatory factor 4 signaling in patients with relapsing-remitting multiple sclerosis. Front Immunol 7:543.  https://doi.org/10.3389/fimmu.2016.00543 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140(6):845–858.  https://doi.org/10.1016/j.cell.2010.02.021 CrossRefPubMedGoogle Scholar
  114. 114.
    Basu R, Hatton RD, Weaver CT (2013) The Th17 family: flexibility follows function. Immunol Rev 252(1):89–103.  https://doi.org/10.1111/imr.12035 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Bonelli M, Smolen JS, Scheinecker C (2010) Treg and lupus. Ann Rheum Dis 69(Suppl 1):i65–i66.  https://doi.org/10.1136/ard.2009.117135 CrossRefPubMedGoogle Scholar
  116. 116.
    Mellor-Pita S, Citores MJ, Castejon R, Tutor-Ureta P, Yebra-Bango M, Andreu JL, Vargas JA (2006) Decrease of regulatory T cells in patients with systemic lupus erythematosus. Ann Rheum Dis 65(4):553–554.  https://doi.org/10.1136/ard.2005.044974 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Lyssuk EY, Torgashina AV, Soloviev SK, Nassonov EL, Bykovskaia SN (2007) Reduced number and function of CD4+CD25highFoxP3+ regulatory T cells in patients with systemic lupus erythematosus. Adv Exp Med Biol 601:113–119CrossRefGoogle Scholar
  118. 118.
    Lee JH, Wang LC, Lin YT, Yang YH, Lin DT, Chiang BL (2006) Inverse correlation between CD4(+) regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology 117(2):280–286.  https://doi.org/10.1111/j.1365-2567.2005.02306.x CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Suarez A, Lopez P, Gomez J, Gutierrez C (2006) Enrichment of CD4+ CD25high T cell population in patients with systemic lupus erythematosus treated with glucocorticoids. Ann Rheum Dis 65(11):1512–1517.  https://doi.org/10.1136/ard.2005.049924 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Sfikakis PP, Souliotis VL, Fragiadaki KG, Moutsopoulos HM, Boletis JN, Theofilopoulos AN (2007) Increased expression of the FoxP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin Immunol 123(1):66–73.  https://doi.org/10.1016/j.clim.2006.12.006 CrossRefPubMedGoogle Scholar
  121. 121.
    Azab NA, Bassyouni IH, Emad Y, Abd El-Wahab GA, Hamdy G, Mashahit MA (2008) CD4+CD25+ regulatory T cells (TREG) in systemic lupus erythematosus (SLE) patients: the possible influence of treatment with corticosteroids. Clin Immunol 127(2):151–157.  https://doi.org/10.1016/j.clim.2007.12.010 CrossRefPubMedGoogle Scholar
  122. 122.
    Valencia X, Yarboro C, Illei G, Lipsky PE (2007) Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178(4):2579–2588CrossRefGoogle Scholar
  123. 123.
    Tao JH, Cheng M, Tang JP, Liu Q, Pan F, Li XP (2017) Foxp3, regulatory T cell, and autoimmune diseases. Inflammation 40(1):328–339.  https://doi.org/10.1007/s10753-016-0470-8 CrossRefPubMedGoogle Scholar
  124. 124.
    Ohl K, Tenbrock K (2015) Regulatory T cells in systemic lupus erythematosus. Eur J Immunol 45(2):344–355.  https://doi.org/10.1002/eji.201344280 CrossRefPubMedGoogle Scholar
  125. 125.
    Rodriguez-Perea AL, Arcia ED, Rueda CM, Velilla PA (2016) Phenotypical characterization of regulatory T cells in humans and rodents. Clin Exp Immunol 185(3):281–291.  https://doi.org/10.1111/cei.12804 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Gerli R, Nocentini G, Alunno A, Bocci EB, Bianchini R, Bistoni O, Riccardi C (2009) Identification of regulatory T cells in systemic lupus erythematosus. Autoimmun Rev 8(5):426–430.  https://doi.org/10.1016/j.autrev.2009.01.004 CrossRefPubMedGoogle Scholar
  127. 127.
    Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450(7169):566–569.  https://doi.org/10.1038/nature06306 CrossRefPubMedGoogle Scholar
  128. 128.
    Wong CK, Leung TF, Chu IM, Dong J, Lam YY, Lam CW (2015) Aberrant expression of regulatory cytokine IL-35 and pattern recognition receptor NOD2 in patients with allergic asthma. Inflammation 38(1):348–360.  https://doi.org/10.1007/s10753-014-0038-4 CrossRefPubMedGoogle Scholar
  129. 129.
    Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194(5):629–644.  https://doi.org/10.1084/jem.194.5.629 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21(4):589–601.  https://doi.org/10.1016/j.immuni.2004.09.002 CrossRefPubMedGoogle Scholar
  131. 131.
    De Smedt T, Van Mechelen M, De Becker G, Urbain J, Leo O, Moser M (1997) Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 27(5):1229–1235.  https://doi.org/10.1002/eji.1830270526 CrossRefPubMedGoogle Scholar
  132. 132.
    Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8(12):1353–1362.  https://doi.org/10.1038/ni1536 CrossRefPubMedGoogle Scholar
  133. 133.
    Oberle N, Eberhardt N, Falk CS, Krammer PH, Suri-Payer E (2007) Rapid suppression of cytokine transcription in human CD4+CD25 T cells by CD4+Foxp3+ regulatory T cells: independence of IL-2 consumption, TGF-beta, and various inhibitors of TCR signaling. J Immunol 179(6):3578–3587CrossRefGoogle Scholar
  134. 134.
    Chavele KM, Ehrenstein MR (2011) Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett 585(23):3603–3610.  https://doi.org/10.1016/j.febslet.2011.07.043 CrossRefPubMedGoogle Scholar
  135. 135.
    Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Heib V, Becker M, Kubach J, Schmitt S, Stoll S, Schild H, Staege MS, Stassen M, Jonuleit H, Schmitt E (2007) Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204(6):1303–1310.  https://doi.org/10.1084/jem.20062129 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Hopner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rotzschke O, Falk K (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110(4):1225–1232.  https://doi.org/10.1182/blood-2006-12-064527 CrossRefPubMedGoogle Scholar
  137. 137.
    Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR (2006) T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine. J Immunol 177(10):6780–6786CrossRefGoogle Scholar
  138. 138.
    Munn DH, Sharma MD, Mellor AL (2004) Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 172(7):4100–4110.  https://doi.org/10.4049/jimmunol.172.7.4100 CrossRefPubMedGoogle Scholar
  139. 139.
    Hayashi T, Hasegawa K, Adachi C (2005) Elimination of CD4(+)CD25(+) T cell accelerates the development of glomerulonephritis during the preactive phase in autoimmune-prone female NZB x NZW F-1 mice. Int J Exp Pathol 86(5):289–296.  https://doi.org/10.1111/j.0959-9673.2005.00438.x CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Wang X, Qiao Y, Yang L, Song S, Han Y, Tian Y, Ding M, Jin H, Shao F, Liu A (2017) Leptin levels in patients with systemic lupus erythematosus inversely correlate with regulatory T cell frequency. Lupus 26(13):1401–1406.  https://doi.org/10.1177/0961203317703497 CrossRefPubMedGoogle Scholar
  141. 141.
    Matarese G, Di Giacomo A, Sanna V, Lord GM, Howard JK, Di Tuoro A, Bloom SR, Lechler RI, Zappacosta S, Fontana S (2001) Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol 166(10):5909–5916CrossRefGoogle Scholar
  142. 142.
    Matarese G, Carrieri PB, Montella S, De Rosa V, La Cava A (2010) Leptin as a metabolic link to multiple sclerosis. Nat Rev Neurol 6(8):455–461.  https://doi.org/10.1038/nrneurol.2010.89 CrossRefPubMedGoogle Scholar
  143. 143.
    Wei R, Hu Y, Dong F, Xu X, Hu A, Gao G (2016) Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol 94(4):388–399.  https://doi.org/10.1038/icb.2015.110 CrossRefPubMedGoogle Scholar
  144. 144.
    Zhou H, Shang C, Wang M, Shen T, Kong L, Yu C, Ye Z, Luo Y, Liu L, Li Y, Huang S (2016) Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK. Biochem Pharmacol 116:39–50.  https://doi.org/10.1016/j.bcp.2016.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499(7459):485–490.  https://doi.org/10.1038/nature12297 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Moraes-Vieira PM, Larocca RA, Bassi EJ, Peron JP, Andrade-Oliveira V, Wasinski F, Araujo R, Thornley T, Quintana FJ, Basso AS, Strom TB, Camara NO (2014) Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells. Eur J Immunol 44(3):794–806.  https://doi.org/10.1002/eji.201343592 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Kucharska AM, Pyrzak B, Demkow U (2015) Regulatory T cells in obesity. Noncommunicable Diseases 866:35–40.  https://doi.org/10.1007/5584_2015_147 CrossRefGoogle Scholar
  148. 148.
    Han S, Zhuang H, Xu Y, Lee P, Li Y, Wilson JC, Vidal O, Choi HS, Sun Y, Yang LJ, Reeves WH (2015) Maintenance of autoantibody production in pristane-induced murine lupus. Arthritis Res Ther 17:384.  https://doi.org/10.1186/s13075-015-0886-9 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Wen J, Stock AD, Chalmers SA, Putterman C (2016) The role of B cells and autoantibodies in neuropsychiatric lupus. Autoimmun Rev 15(9):890–895.  https://doi.org/10.1016/j.autrev.2016.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Cassia M, Alberici F, Gallieni M, Jayne D (2017) Lupus nephritis and B-cell targeting therapy. Expert Rev Clin Immunol 13(10):951–962.  https://doi.org/10.1080/1744666X.2017.1366855 CrossRefPubMedGoogle Scholar
  151. 151.
    Chan OT, Madaio MP, Shlomchik MJ (1999) The central and multiple roles of B cells in lupus pathogenesis. Immunol Rev 169:107–121CrossRefGoogle Scholar
  152. 152.
    Wen J, Chen CH, Stock A, Doerner J, Gulinello M, Putterman C (2016) Intracerebroventricular administration of TNF-like weak inducer of apoptosis induces depression-like behavior and cognitive dysfunction in non-autoimmune mice. Brain Behav Immun 54:27–37.  https://doi.org/10.1016/j.bbi.2015.12.017 CrossRefPubMedGoogle Scholar
  153. 153.
    Dantzer R (2009) Cytokine, sickness behavior, and depression. Immunol Allergy Clin N Am 29(2):247–264.  https://doi.org/10.1016/j.iac.2009.02.002 CrossRefGoogle Scholar
  154. 154.
    Giles JR, Kashgarian M, Koni PA, Shlomchik MJ (2015) B cell-specific MHC class II deletion reveals multiple nonredundant roles for B cell antigen presentation in murine lupus. J Immunol 195(6):2571–2579.  https://doi.org/10.4049/jimmunol.1500792 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Giltiay NV, Shu GL, Shock A, Clark EA (2017) Targeting CD22 with the monoclonal antibody epratuzumab modulates human B-cell maturation and cytokine production in response to Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) signaling. Arthritis Res Ther 19(1):91.  https://doi.org/10.1186/s13075-017-1284-2 CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S, Fan B, O’Connor RA, Anderton SM, Bar-Or A, Fillatreau S, Gray D (2012) B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 209(5):1001–1010.  https://doi.org/10.1084/jem.20111675 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Lampropoulou V, Hoehlig K, Roch T, Neves P, Calderon Gomez E, Sweenie CH, Hao Y, Freitas AA, Steinhoff U, Anderton SM, Fillatreau S (2008) TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol 180(7):4763–4773CrossRefGoogle Scholar
  158. 158.
    Sieber J, Daridon C, Fleischer SJ, Fleischer V, Hiepe F, Alexander T, Heine G, Burmester GR, Fillatreau S, Dörner T (2014) Active systemic lupus erythematosus is associated with a reduced cytokine production by B cells in response to TLR9 stimulation. Arthritis Res Ther 16:477CrossRefGoogle Scholar
  159. 159.
    Glaum MC, Narula S, Song D, Zheng Y, Anderson AL, Pletcher CH, Levinson AI (2009) Toll-like receptor 7-induced naive human B-cell differentiation and immunoglobulin production. J Allergy Clin Immunol 123(1):224–230 e224.  https://doi.org/10.1016/j.jaci.2008.09.018 CrossRefPubMedGoogle Scholar
  160. 160.
    Agrawal S, Gollapudi S, Su H, Gupta S (2011) Leptin activates human B cells to secrete TNF-alpha, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway. J Clin Immunol 31(3):472–478.  https://doi.org/10.1007/s10875-010-9507-1 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Tanaka M, Suganami T, Kim-Saijo M, Toda C, Tsuiji M, Ochi K, Kamei Y, Minokoshi Y, Ogawa Y (2011) Role of central leptin signaling in the starvation-induced alteration of B-cell development. J Neurosci 31(23):8373–8380.  https://doi.org/10.1523/Jneurosci.6562-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Lam QLK, Wang SJ, Ko OKH, Kincade PW, Lu LW (2010) Leptin signaling maintains B-cell homeostasis via induction of Bcl-2 and Cyclin D1. P Natl Acad Sci USA 107(31):13812–13817.  https://doi.org/10.1073/pnas.1004185107 CrossRefGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2019

Authors and Affiliations

  1. 1.Department of Immunology, College of Basic Medical ScienceDalian Medical UniversityLiaoningChina
  2. 2.Department of Immunology and RheumatologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsuChina

Personalised recommendations