Altered expression of circular RNA in primary Sjögren’s syndrome

  • Lin-Chong Su
  • Wang-Dong Xu
  • Xiao-Yan Liu
  • Lu FuEmail author
  • An-Fang HuangEmail author
Original Article



This study evaluated expression of circRNA in primary Sjögren’s syndrome (pSS) patients so as to find novel biomarkers for pSS screening and discussed possible role of circRNA in pSS. We also evaluated expression profile of circRNA in systemic lupus erythematosus (SLE) patients.


Microarray analysis detected circRNA expression in PBMCs from five paired pSS, SLE patients, and controls. Then, differentially expressed circRNAs were validated in 30 pSS patients as compared to 30 SLE patients, healthy controls. CircRNAs interacting with miRNAs were discussed by Arraystar’s homemade miRNA target prediction software. ROC analysis assessed the diagnostic value.


We identified 234 differentially expressed circRNAs in pSS patients and verified five selected circRNAs (including hsa_circRNA_001264, hsa_circRNA_104121, hsa_circRNA_045355, hsa_circRNA_103461, hsa_circRNA_105034). Expression of hsa_circRNA_001264, hsa_circRNA_104121, and hsa_circRNA_045355 was strongly related to some clinical, laboratory parameters, and disease activity index in pSS patients. ROC analysis indicated potential diagnostic ability for the three circRNAs in pSS patients. One hundred and forty-eight circRNAs were differently expressed between lupus patients and controls.


This study provides evidence that hsa_circRNA_001264, hsa_circRNA_104121, and hsa_circRNA_045355 might be biomarkers for pSS, correlate with pSS etiology.

Key Points

Many circRNAs were dysregulated in pSS patients.

Differentially expressed circRNAs correlated with pSS clinical, laboratory features.

CircRNAs may be biomarkers for pSS.


Autoimmunity CircRNA Primary Sjögren’s syndrome 



Circular RNA


Body mass index


Rheumatoid factor


Anti-nuclear antibody


Authors’ contribution

LS, WX, XL, LF, and AH designed this study. LS, WX, XL, LF, and AH collected data. LS, WX, LF, and AF did laboratory test and statistical analysis. LS, WX, LF, and AF wrote the paper.

Funding information

This study was funded by Sichuan Provincial Science and Technology Program (2019YJ0540), the Key Project of Sichuan Education Department (17ZA0430).

Compliance with ethical standards



Statement on consent for publication

The whole authors permitted submission of the paper.

Supplementary material

10067_2019_4728_Fig4_ESM.png (1.2 mb)
Supplementary figure 1

Detailed annotation for circRNA-miRNA interactions. Representative notation example shows the complementary situation of hsa_circRNA_001264. (PNG 1257 kb)

10067_2019_4728_MOESM1_ESM.tif (232 kb)
High resolution image (TIF 232 kb)
10067_2019_4728_MOESM2_ESM.docx (16 kb)
Supplementary table 1 Primer sequence of internal reference and the 5 circRNAs. (DOCX 16 kb)
10067_2019_4728_MOESM3_ESM.docx (21 kb)
Supplementary table 2 The top eight elevated, six reduced circRNAs differed in pSS patients. (DOCX 20 kb)
10067_2019_4728_MOESM4_ESM.docx (19 kb)
Supplementary table 3 Association of hsa_circRNA_001264, hsa_circRNA_104121, hsa_circRNA_045355 expression and pSS patients’ laboratory characteristics. (DOCX 19 kb)


  1. 1.
    Shi H, Cao N, Pu Y, Xie L, Zheng L, Yu C (2016) Long non-coding RNA expression profile in minor salivary gland of primary Sjögren’s syndrome. Arthritis Res Ther 18:109. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gajewski TF, Schreiber H, Fu YX (2019) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022. CrossRefGoogle Scholar
  3. 3.
    Gierut A, Perlman H, Pope RM (2010) Innate immunity and rheumatoid arthritis. Rheum Dis Clin N Am 36:271–296. CrossRefGoogle Scholar
  4. 4.
    Li Y, Shi X (2013) MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 10:65–71. CrossRefPubMedGoogle Scholar
  5. 5.
    O'Connell RM, Rao DS, Baltimore D (2012) microRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312. CrossRefPubMedGoogle Scholar
  6. 6.
    Bolha L, Ravnik-Glavač M, Glavač D (2017) Circular RNAs: biogenesis, function, and a role as possible cancer biomarkers. Int J Genomics 2017:6218353. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M (2009) HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23:1743–1748. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 284:5731–5741. CrossRefGoogle Scholar
  9. 9.
    Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ouyang Q, Wu J, Jiang Z, Zhao J, Wang R, Lou A, Zhu D, Shi GP, Yang M (2017) Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem 42:651–659. CrossRefPubMedGoogle Scholar
  11. 11.
    Zheng F, Yu X, Huang J, Dai Y (2017) Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol Med Rep 16:8029–8036. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li LJ, Zhu ZW, Zhao W, Tao SS, Li BZ, Xu SZ, Wang JB, Zhang MY, Wu J, Leng RX, Fan YG, Pan HF, Ye DQ (2018) Circular RNA expression profile and potential function of hsa_circ_0045272 in systemic lupus erythematosus. Immunology 155:137–149. CrossRefPubMedGoogle Scholar
  13. 13.
    Wu Y, Zhang Y, Zhang Y, Wang JJ (2017) CircRNA hsa_circ_0005105 upregulates NAMPT expression and promotes chondrocyte extracellular matrix degradation by sponging miR-26a. Cell Biol Int 41:1283–1289. CrossRefPubMedGoogle Scholar
  14. 14.
    Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, Daniels TE, Fox PC, Fox RI, Kassan SS, Pillemer SR, Talal N, Weisman MH (2002) Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European consensus group. Ann Rheum Dis 61:554–558. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277CrossRefGoogle Scholar
  16. 16.
    Vitali C, Palombi G, Baldini C, Benucci M, Bombardieri S, Covelli M, Del Papa N, De Vita S, Epis O, Franceschini F, Gerli R, Govoni M, Bongi SM, Maglione W, Migliaresi S, Montecucco C, Orefice M, Priori R, Tavoni A, Valesini G (2007) Sjögren’s syndrome disease damage index and disease activity index: scoring systems for the assessment of disease damage and disease activity in Sjögren's syndrome, derived from an analysis of a cohort of Italian patients. Arthritis Rheum 56:2223–2231. CrossRefGoogle Scholar
  17. 17.
    Ghosal S, Das S, Sen R, Basak P, Chakrabarti J (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in drosophila. Genome Biol 5:R1 Accessed 1 Jan 2019CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282. CrossRefPubMedGoogle Scholar
  20. 20.
    Yuan ZC, Wang JM, Huang AF (2019) Elevated expression of interleukin-37 in patients with rheumatoid arthritis. Int J Rheum Dis 2019:1123–1129. CrossRefGoogle Scholar
  21. 21.
    Rodrigues AR, Soares R (2017) Inflammation in Sjögren's syndrome: cause or consequence? Autoimmunity 50:141–150. CrossRefPubMedGoogle Scholar
  22. 22.
    Barone F, Colafrancesco S (2016) Sjögren’s syndrome: from pathogenesis to novel therapeutic targets. Clin Exp Rheumatol 34:58–62PubMedGoogle Scholar
  23. 23.
    Carsons SE, Vivino FB, Parke A, Carteron N, Sankar V, Brasington R, Brennan MT, Ehlers W, Fox R, Scofield H, Hammitt KM, Birnbaum J, Kassan S, Mandel S (2017) Treatment guidelines for rheumatologic manifestations of Sjögren's syndrome: use of biologic agents, management of fatigue, and inflammatory musculoskeletal pain. Arthritis Care Res (Hoboken) 69:517–527. CrossRefGoogle Scholar
  24. 24.
    Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365:141–148. CrossRefPubMedGoogle Scholar
  25. 25.
    Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211. CrossRefPubMedGoogle Scholar
  26. 26.
    Li H, Li K, Lai W, Li X, Wang H, Yang J, Chu S, Wang H, Kang C, Qiu Y (2018) Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta 480:17–25. CrossRefPubMedGoogle Scholar
  27. 27.
    Chen JQ, Papp G, Szodoray P, Zeher M (2016) The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun Rev 15:1171–1180. CrossRefPubMedGoogle Scholar
  28. 28.
    Wang-Renault SF, Boudaoud S, Nocturne G, Roche E, Sigrist N, Daviaud C, Bugge Tinggaard A, Renault V, Deleuze JF, Mariette X, Tost J (2018) Deregulation of microRNA expression in purified T and B lymphocytes from patients with primary Sjögren’s syndrome. Ann Rheum Dis 77:133–140. CrossRefPubMedGoogle Scholar
  29. 29.
    Li X, Yang L, Chen LL (2018) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71:428–442. CrossRefPubMedGoogle Scholar
  30. 30.
    Li B, Bai L, Shen P, Sun Y, Chen Z, Wen Y (2017) Identification of differentially expressed microRNAs in knee anterior cruciate ligament tissues surgically removed from patients with osteoarthritis. Int J Mol Med 40:1105–1113. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kobayashi T, Tomofuji T, Machida T, Yoneda T, Ekuni D, Azuma T, Maruyama T, Hirose A, Morita M (2017) Expression of salivary miR-203a-3p was related with Oral health-related quality of life in healthy volunteers. Int J Mol Sci 18:1263. CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Yang Z, Wang J, Pan Z, Zhang Y (2018) miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. Exp Ther Med 15:3781–3790. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2019

Authors and Affiliations

  1. 1.Department of Rheumatology and ImmunologyMinda Hospital of Hubei Minzu UniversityEnshiChina
  2. 2.Department of Evidence-Based MedicineSouthwest Medical UniversityLuzhouChina
  3. 3.Laboratory Animal CenterSouthwest Medical UniversityLuzhouChina
  4. 4.Department of Rheumatology and ImmunologyAffiliated Hospital of Southwest Medical UniversityLuzhouChina

Personalised recommendations