Clinical Rheumatology

, Volume 38, Issue 12, pp 3471–3476 | Cite as

Cardiac involvement in idiopathic inflammatory myopathies detected by cardiac magnetic resonance imaging

  • Thomas KhooEmail author
  • Michael B. Stokes
  • Karen Teo
  • Susanna Proudman
  • Sajini Basnayake
  • Prashanthan Sanders
  • Vidya Limaye
Brief Report


Cardiac involvement in idiopathic inflammatory myopathies (IIM) adversely affects prognosis but is commonly sub-clinical. Cardiac magnetic resonance imaging (CMR) is an effective imaging modality for detecting myocardial inflammation and fibrosis but its use as a screening tool for cardiac disease in IIM has not been fully explored. Nineteen patients with IIM without cardiac symptoms underwent CMR using a specific cardiomyopathy protocol including specific sequences detecting focal and diffuse myocardial fibrosis. 9/19 patients demonstrated late gadolinium enhancement (LGE (3/9 right ventricular insertion, 1/9 sub-endocardial, 7/9 mid-wall/sub-epicardial)). T1 mapping was performed in 15 patients. In total, 7/15 had elevated native T1 values, of which four had detected LGE. Myocardial fibrosis was frequently detected in IIM patients without cardiac history. Detection of LGE and elevated T1 values may have negative prognostic implications. Longitudinal studies determining whether early or augmented treatment has a role in patients with sub-clinical cardiac involvement are needed.

Key Points

Cardiac involvement in myositis adversely affects prognosis.

Cardiac magnetic resonance imaging is an effective tool for detecting cardiac involvement.

T1 mapping is a technique which detects diffuse myocardial inflammation and fibrosis.

In our study, focal and diffuse myocardial fibrosis was frequently found in myositis patients without cardiac symptoms.


Cardiac magnetic resonance imaging Cardiomyopathy Heart failure Idiopathic inflammatory myopathy Myocardial fibrosis Myocarditis 



This research did not receive any specific grants from funding agencies in the public, commercial or not-for-profit sectors. All patient identifiers or details that may disclose the identity of patients have been removed. This was performed in accordance with the ethical standards laid down in the 1964 declaration of Helsinki and its later amendments.

Compliance with ethical standards




  1. 1.
    Rosenbohm A, Buckert D, Gerischer N, Walcher T, Kassubek J, Rottbauer W, Ludolph AC, Bernhardt P (2015) Early diagnosis of cardiac involvement in idiopathic inflammatory myopathy by cardiac magnetic resonance tomography. J Neurol 262(4):949–956. CrossRefPubMedGoogle Scholar
  2. 2.
    Danieli MG, Gelardi C, Guerra F, Cardinaletti P, Pedini V, Gabrielli A (2016) Cardiac involvement in polymyositis and dermatomyositis. Autoimmun Rev 15(5):462–465. CrossRefPubMedGoogle Scholar
  3. 3.
    Gupta R, Wayangankar SA, Targoff IN, Hennebry TA (2011) Clinical cardiac involvement in idiopathic inflammatory myopathies: a systematic review. Int J Cardiol 148(3):261–270. CrossRefPubMedGoogle Scholar
  4. 4.
    Guerra F, Gelardi C, Capucci A, Gabrielli A, Danieli MG (2017) Subclinical cardiac dysfunction in polymyositis and dermatomyositis: a speckle-tracking case-control study. J Rheumatol 44(6):815–821. CrossRefPubMedGoogle Scholar
  5. 5.
    Toong C, Puranik R, Adelstein S (2012) Use of cardiac MR imaging to evaluate the presence of myocarditis in autoimmune myositis: three cases. Rheumatol Int 32(3):779–782. CrossRefPubMedGoogle Scholar
  6. 6.
    Rai SK, Choi HK, Sayre EC, Avina-Zubieta JA (2016) Risk of myocardial infarction and ischaemic stroke in adults with polymyositis and dermatomyositis: a general population-based study. Rheumatology (Oxford) 55(3):461–469. CrossRefGoogle Scholar
  7. 7.
    Danko K, Ponyi A, Constantin T, Borgulya G, Szegedi G (2004) Long-term survival of patients with idiopathic inflammatory myopathies according to clinical features: a longitudinal study of 162 cases. Medicine (Baltimore) 83(1):35–42. CrossRefGoogle Scholar
  8. 8.
    Pohost GM (2008) The history of cardiovascular magnetic resonance. JACC Cardiovasc Imaging 1(5):672–678. CrossRefPubMedGoogle Scholar
  9. 9.
    Mavrogeni SI, Kitas GD, Dimitroulas T, Sfikakis PP, Seo P, Gabriel S, Patel AR, Gargani L, Bombardieri S, Matucci-Cerinic M, Lombardi M, Pepe A, Aletras AH, Kolovou G, Miszalski T, van Riel P, Semb A, Gonzalez-Gay MA, Dessein P, Karpouzas G, Puntmann V, Nagel E, Bratis K, Karabela G, Stavropoulos E, Katsifis G, Koutsogeorgopoulou L, van Rossum A, Rademakers F, Pohost G, Lima JA (2016) Cardiovascular magnetic resonance in rheumatology: current status and recommendations for use. Int J Cardiol 217:135–148. CrossRefPubMedGoogle Scholar
  10. 10.
    Diederichsen LP, Simonsen JA, Diederichsen AC, Kim WY, Hvidsten S, Hougaard M, Junker P, Lundberg IE, Petersen H, Hansen ES, Eskerud KS, Kay SD, Jacobsen S (2015) Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies. Clin Exp Rheumatol 33(5):706–714PubMedGoogle Scholar
  11. 11.
    Mavrogeni S, Douskou M, Manoussakis MN (2011) Contrast-enhanced CMR imaging reveals myocardial involvement in idiopathic inflammatory myopathy without cardiac manifestations. JACC Cardiovasc Imaging 4(12):1324–1325. CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang L, Wang GC, Ma L, Zu N (2012) Cardiac involvement in adult polymyositis or dermatomyositis: a systematic review. Clin Cardiol 35(11):686–691. CrossRefPubMedGoogle Scholar
  13. 13.
    Goitein O, Matetzky S, Beinart R, Di Segni E, Hod H, Bentancur A, Konen E (2009) Acute myocarditis: noninvasive evaluation with cardiac MRI and transthoracic echocardiography. AJR Am J Roentgenol 192(1):254–258. CrossRefPubMedGoogle Scholar
  14. 14.
    Holton JL, Wedderburn LR, Hanna MG (2013) Polymyositis, Dermatomyositis, and Inclusion Body Myositis. In: H. H. Goebel, C. Sewry, R. Weller (ed) Muscle Disease. First edn. Wiley Blackwell, pp 298–312 CrossRefGoogle Scholar
  15. 15.
    Poyhonen P, Kivisto S, Holmstrom M, Hanninen H (2014) Quantifying late gadolinium enhancement on CMR provides additional prognostic information in early risk-stratification of nonischemic cardiomyopathy: a cohort study. BMC Cardiovasc Disord 14:110. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kuruvilla S, Adenaw N, Katwal AB, Lipinski MJ, Kramer CM, Salerno M (2014) Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ Cardiovasc Imaging 7(2):250–258. CrossRefPubMedGoogle Scholar
  17. 17.
    Perazzolo Marra M, De Lazzari M, Zorzi A, Migliore F, Zilio F, Calore C, Vettor G, Tona F, Tarantini G, Cacciavillani L, Corbetti F, Giorgi B, Miotto D, Thiene G, Basso C, Iliceto S, Corrado D (2014) Impact of the presence and amount of myocardial fibrosis by cardiac magnetic resonance on arrhythmic outcome and sudden cardiac death in nonischemic dilated cardiomyopathy. Heart Rhythm 11(5):856–863. CrossRefPubMedGoogle Scholar
  18. 18.
    Iles L, Pfluger H, Lefkovits L, Butler MJ, Kistler PM, Kaye DM, Taylor AJ (2011) Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death. J Am Coll Cardiol 57(7):821–828. CrossRefPubMedGoogle Scholar
  19. 19.
    Mavrogeni S, Sfikakis PP, Dimitroulas T, Kolovou G, Kitas GD (2014) Cardiac and muscular involvement in idiopathic inflammatory myopathies: noninvasive diagnostic assessment and the role of cardiovascular and skeletal magnetic resonance imaging. Inflamm Allergy Drug Targets 13(3):206–216. CrossRefPubMedGoogle Scholar
  20. 20.
    Everett RJ, Stirrat CG, Semple SI, Newby DE, Dweck MR, Mirsadraee S (2016) Assessment of myocardial fibrosis with T1 mapping MRI. Clin Radiol 71(8):768–778. CrossRefPubMedGoogle Scholar
  21. 21.
    Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S, Hinojar R, Doltra A, Varma N, Child N, Rogers T, Suna G, Arroyo Ucar E, Goodman B, Khan S, Dabir D, Herrmann E, Zeiher AM, Nagel E, International TMCMROS (2016) T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. JACC Cardiovasc Imaging 9(1):40–50. CrossRefPubMedGoogle Scholar
  22. 22.
    Limaye VS, Lester S, Blumbergs P, Roberts-Thomson PJ (2010) Idiopathic inflammatory myositis is associated with a high incidence of hypertension and diabetes mellitus. Int J Rheum Dis 13(2):132–137. CrossRefPubMedGoogle Scholar
  23. 23.
    Diederichsen LP (2017) Cardiovascular involvement in myositis. Curr Opin Rheumatol 29(6):598–603. CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2019

Authors and Affiliations

  1. 1.Central Adelaide Local Health NetworkAdelaideAustralia
  2. 2.Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
  3. 3.Centre for Heart Rhythm Disorders, South Australian Health and Medical Research InstituteUniversity of AdelaideAdelaideAustralia
  4. 4.Rheumatology UnitRoyal Adelaide HospitalAdelaideAustralia
  5. 5.Discipline of MedicineUniversity of AdelaideAdelaideAustralia
  6. 6.Rheumatology SAAdelaideAustralia

Personalised recommendations