Advertisement

Clinical Rheumatology

, Volume 38, Issue 11, pp 3099–3107 | Cite as

The expression and clinical significance of different forms of LILRA3 in systemic lupus erythematosus

  • Yan Du
  • Fengyin Sun
  • Meiju Zhou
  • Xinyu Wu
  • Wenjia Sun
  • Yujie Jiang
  • Qi Cheng
  • Xiaochan Chen
  • Huaxiang WuEmail author
  • Jing XueEmail author
Original Article
  • 77 Downloads

Abstract

Objective

Our previous study has shown that functional leukocyte immunoglobulin-like receptors A3 (LILRA3) contributes to susceptibility and subphenotypes of systemic lupus erythematosus (SLE). However, the mechanism remains unclear. We aimed to evaluate the role of LILRA3 in SLE.

Methods

One hundred twenty-six SLE patients and 48 healthy controls were recruited in this study. Functional studies were performed using intracellular flow cytometry and ELISA.

Results

Both LILRA3 levels in serum and CD14+ monocytes were significantly elevated in SLE patients compared with healthy controls. Elevated LILRA3 level was found positively correlated with SLEDAI. Furthermore, more elevated LILRA3 levels were found in patients with higher SLEDAI, presence of lupus nephritis, and thrombocytopenia.

Conclusions

Both LILRA3 levels in serum and CD14+ monocytes significantly increased in SLE and positively correlated with disease activity and severity. The upregulation of LILRA3 expression may serve as a biomarker of disease activity and severity of SLE.

Key Points

LILRA3 contributes to susceptibility and subphenotypes of SLE; LILRA3 is elevated in SLE patients.

Increased LILRA3 correlated with disease activity and severity.

LILRA3 may serve as a biomarker of disease activity and severity of SLE.

Keywords

CD14+ monocytes LILRA3 Systemic lupus erythematosus 

Notes

Author contributions

Study conception and design: Du, Xue, Huaxiang Wu.

Acquisition of data: Du, Fengyin Sun, Xinyu Wu, Zhou, Jiang, Cheng, Xue, Wenjia Sun, Chen, Huaxiang Wu.

Analysis and interpretation of data: Du, Fengyin Sun, Xue, Huaxiang Wu.

Manuscript preparation: Du, Xue, Huaxiang Wu.

Statistical analysis: Du, Fengyin Sun, Huaxiang Wu.

Funding

Supported by the National Natural Science Foundation of China (No. 81501388), Zhejiang Provincial Public Technology Applied Research Project (No. 2015C33177, No. 2017C33032, No. LGF19H100003) and Zhejiang Provincial Medical Science and Technology Plan Project (No. 2017KY381).

Compliance with ethical standards

Disclosures

None.

Supplementary material

10067_2019_4624_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 21 kb)

References

  1. 1.
    Brown D, Trowsdale J, Allen R (2004) The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens 64(3):215–225CrossRefGoogle Scholar
  2. 2.
    Norman PJ, Carey BS, Stephens HAF, Vaughan RW (2003) DNA sequence variation and molecular genotyping of natural killer leukocyte immunoglobulin-like receptor, LILRA3. Immunogenetics 55(3):165–171CrossRefGoogle Scholar
  3. 3.
    Colonna M, Nakajima H, Navarro F, Lopez-Botet M (1999) A novel family of Ig-like receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells. J Leukoc Biol 66(3):375–381CrossRefGoogle Scholar
  4. 4.
    Torkar M, Haude A, Milne S, Beck S, Trowsdale J, Wilson MJ (2000) Arrangement of the ILT gene cluster: a common null allele of the ILT6 gene results from a 6.7-kbp deletion. Eur J Immunol 30(12):3655–3662CrossRefGoogle Scholar
  5. 5.
    Hirayasu K, Ohashi J, Tanaka H, Kashiwase K, Ogawa A, Takanashi M, Satake M, Jia GJ, Chimge NO, Sideltseva EW, Tokunaga K, Yabe T (2008) Evidence for natural selection on leukocyte immunoglobulin-like receptors for HLA class I in northeast Asians. Am J Hum Genet 82(5):1075–1083CrossRefGoogle Scholar
  6. 6.
    Koch S, Goedde R, Nigmatova V, Epplen JT, Muller N, de Seze J, Vermersch P, Momot T, Schmidt RE, Witte T (2005) Association of multiple sclerosis with ILT6 deficiency. Genes Immun 6(5):445–447CrossRefGoogle Scholar
  7. 7.
    Kabalak G, Dobberstein SB, Matthias T, Reuter S, The YH, Dorner T, Schmidt RE, Witte T (2009) Association of immunoglobulin-like transcript 6 deficiency with Sjogren's syndrome. Arthritis Rheum 60(10):2923–2925CrossRefGoogle Scholar
  8. 8.
    Ordonez D, Sanchez AJ, Martinez-Rodriguez JE, Cisneros E, Ramil E, Romo N, Moraru M, Munteis E, Lopez-Botet M, Roquer J, Garcia-Merino A, Vilches C (2009) Multiple sclerosis associates with LILRA3 deletion in Spanish patients. Genes Immun 10(6):579–585CrossRefGoogle Scholar
  9. 9.
    Du Y, Su Y, He J, Yang Y, Shi Y, Cui Y, Luo C, Wu X, Liu X, Hu F, Ma X, Zheng L, Zhang J, Zuo X, Sheng Y, Wu L, Zhang X, Guo J, Li Z (2015) Impact of the leucocyte immunoglobulin-like receptor A3 (LILRA3) on susceptibility and subphenotypes of systemic lupus erythematosus and Sjogren's syndrome. Ann Rheum Dis 74(11):2070–2075CrossRefGoogle Scholar
  10. 10.
    Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725CrossRefGoogle Scholar
  11. 11.
    Nakajima H, Samaridis J, Angman L, Colonna M (1999) Human myeloid cells express an activating ILT receptor (ILT1) that associates with fc receptor gamma-chain. J Immunol 162(1):5–8PubMedGoogle Scholar
  12. 12.
    Mocsai A, Ruland J, Tybulewicz VL (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10(6):387–402CrossRefGoogle Scholar
  13. 13.
    Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290(5489):84–89CrossRefGoogle Scholar
  14. 14.
    Monsivais-Urenda A, Nino-Moreno P, Abud-Mendoza C, Baranda L, Layseca-Espinosa E, Lopez-Botet M, Gonzalez-Amaro R (2007) Analysis of expression and function of the inhibitory receptor ILT2 (CD85j/LILRB1/LIR-1) in peripheral blood mononuclear cells from patients with systemic lupus erythematosus (SLE). J Autoimmun 29(2–3):97–105CrossRefGoogle Scholar
  15. 15.
    Wiendl H, Feger U, Mittelbronn M, Jack C, Schreiner B, Stadelmann C, Antel J, Brueck W, Meyermann R, Bar-Or A, Kieseier BC, Weller M (2005) Expression of the immune-tolerogenic major histocompatibility molecule HLA-G in multiple sclerosis: implications for CNS immunity. Brain 128(Pt 11:2689–2704CrossRefGoogle Scholar
  16. 16.
    Kuroki K, Tsuchiya N, Shiroishi M, Rasubala L, Yamashita Y, Matsuta K, Fukazawa T, Kusaoi M, Murakami Y, Takiguchi M, Juji T, Hashimoto H, Kohda D, Maenaka K, Tokunaga K (2005) Extensive polymorphisms of LILRB1 (ILT2, LIR1) and their association with HLA-DRB1 shared epitope negative rheumatoid arthritis. Hum Mol Genet 14(16):2469–2480CrossRefGoogle Scholar
  17. 17.
    Figueroa-Vega N, Galindo-Rodriguez G, Bajana S, Portales-Perez D, Abud-Mendoza C, Sanchez-Torres C, Gonzalez-Amaro R (2006) Phenotypic analysis of IL-10-treated, monocyte-derived dendritic cells in patients with systemic lupus erythematosus. Scand J Immunol 64(6):668–676CrossRefGoogle Scholar
  18. 18.
    An H, Chandra V, Piraino B, Borges L, Geczy C, McNeil HP, Bryant K, Tedla N (2010) Soluble LILRA3, a potential natural antiinflammatory protein, is increased in patients with rheumatoid arthritis and is tightly regulated by interleukin 10, tumor necrosis factor-alpha, and interferon-gamma. J Rheumatol 37(8):1596–1606CrossRefGoogle Scholar
  19. 19.
    Huynh OA, Hampartzoumian T, Arm JP, Hunt J, Borges L, Ahern M, Smith M, Geczy CL, McNeil HP, Tedla N (2007) Down-regulation of leucocyte immunoglobulin-like receptor expression in the synovium of rheumatoid arthritis patients after treatment with disease-modifying anti-rheumatic drugs. Rheumatology (Oxford) 46(5):742–751CrossRefGoogle Scholar
  20. 20.
    Choi J, Kim ST, Craft J (2012) The pathogenesis of systemic lupus erythematosus-an update. Curr Opin Immunol 24(6):651–657CrossRefGoogle Scholar
  21. 21.
    Gaipl US, Munoz LE, Grossmayer G, Lauber K, Franz S, Sarter K, Voll RE, Winkler T, Kuhn A, Kalden J, Kern P, Herrmann M (2007) Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun 28(2–3):114–121CrossRefGoogle Scholar
  22. 22.
    Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6(5):280–289CrossRefGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2019

Authors and Affiliations

  • Yan Du
    • 1
  • Fengyin Sun
    • 2
  • Meiju Zhou
    • 1
  • Xinyu Wu
    • 1
  • Wenjia Sun
    • 1
  • Yujie Jiang
    • 1
  • Qi Cheng
    • 1
  • Xiaochan Chen
    • 1
  • Huaxiang Wu
    • 1
    Email author
  • Jing Xue
    • 1
    Email author
  1. 1.Department of RheumatologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
  2. 2.Department of Pediatric Surgery, Qilu HospitalShandong UniversityJinanChina

Personalised recommendations