Advertisement

Clinical Rheumatology

, Volume 38, Issue 2, pp 307–316 | Cite as

Gene and miRNA expression in giant cell arteritis—a concise systematic review of significantly modified studies

  • Tadeja KuretEmail author
  • Blaž BurjaEmail author
  • Julia Feichtinger
  • Gerhard G. Thallinger
  • Mojca Frank-Bertoncelj
  • Katja Lakota
  • Polona Žigon
  • Snezna Sodin-SemrlEmail author
  • Saša Čučnik
  • Matija Tomšič
  • Alojzija Hočevar
Review Article
Part of the following topical collections:
  1. Rheumatology in Slovenia: Clinical practice and translational research

Abstract

Giant cell arteritis (GCA) is a systemic vasculitis in individuals older than 50 years, characterized by headaches, visual disturbances, painful scalp, jaw claudication, impairment of limb arteries, and systemic inflammation, among other symptoms. GCA diagnosis is confirmed by a positive temporal artery biopsy (TAB) or by imaging modalities. A prominent acute phase response with inflammation is the hallmark of the disease, predominantly targeting large- and medium-sized arteries leading to stenosis or occlusion of arterial lumen. To date, there are no reliable tissue markers specific for GCA. Scarce reports have indicated the importance of epigenetics in GCA. The current systematic review reports significantly changed candidate biomarkers in TABs of GCA patients compared to non-GCA patients using qPCR.

Keywords

Giant cell arteritis Temporal artery biopsy Vasculitis miRNA mRNA expression 

Notes

Funding

Funding for this work was obtained from the Slovenian Research Agency for the National Research Programme #P3-0314, the Austrian Ministry of Science, Research and Economy (HSRSM project OMICS Center Graz), and the Austrian Science Fund (FWF): T923-B26.

Compliance with ethical standards

Disclosures

None.

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors give consent for publication.

References

  1. 1.
    Dejaco C, Brouwer E, Mason JC, Buttgereit F, Matteson EL, Dasgupta B (2017) Giant cell arteritis and polymyalgia rheumatica: current challenges and opportunities. Nat Rev Rheumatol 13(10):578–592.  https://doi.org/10.1038/nrrheum.2017.142 CrossRefGoogle Scholar
  2. 2.
    Makol A, Matteson EL (2012) Utility of C-reactive protein in the diagnosis of giant cell arteritis: better than the erythrocyte sedimentation rate? Int J Clin Rheumatol 7(3):247–250CrossRefGoogle Scholar
  3. 3.
    De Smit E, Clarke L, Sanfilippo PG, Merriman TR, Brown MA, Hill CL, Hewitt AW (2017) Geo-epidemiology of temporal artery biopsy-positive giant cell arteritis in Australia and New Zealand: is there a seasonal influence? RMD Open 3(2):e000531.  https://doi.org/10.1136/rmdopen-2017-000531 CrossRefGoogle Scholar
  4. 4.
    Samson M, Corbera-Bellalta M, Audia S, Planas-Rigol E, Martin L, Cid MC, Bonnotte B (2017) Recent advances in our understanding of giant cell arteritis pathogenesis. Autoimmun Rev 16(8):833–844.  https://doi.org/10.1016/j.autrev.2017.05.014 CrossRefGoogle Scholar
  5. 5.
    Guevara M, Kollipara CS (2018) Recent advances in Giant cell arteritis. Curr Rheumatol Rep 20(5):25.  https://doi.org/10.1007/s11926-018-0737-1 CrossRefGoogle Scholar
  6. 6.
    Zhang H, Watanabe R, Berry GJ, Vaglio A, Liao YJ, Warrington KJ, Goronzy JJ, Weyand CM (2017) Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc Natl Acad Sci U S A 114(6):E970–E979.  https://doi.org/10.1073/pnas.1616848114 CrossRefGoogle Scholar
  7. 7.
    Weyand CM, Berry GJ, Goronzy JJ (2018) The immunoinhibitory PD-1/PD-L1 pathway in inflammatory blood vessel disease. J Leukoc Biol 103(3):565–575.  https://doi.org/10.1189/jlb.3MA0717-283 Google Scholar
  8. 8.
    Watanabe R, Zhang H, Berry G, Goronzy JJ, Weyand CM (2017) Immune checkpoint dysfunction in large and medium vessel vasculitis. Am J Physiol Heart Circ Physiol 312(5):H1052–H1059.  https://doi.org/10.1152/ajpheart.00024.2017 CrossRefGoogle Scholar
  9. 9.
    Samson M, Audia S, Fraszczak J, Trad M, Ornetti P, Lakomy D, Ciudad M, Leguy V, Berthier S, Vinit J, Manckoundia P, Maillefert JF, Besancenot JF, Aho-Glele S, Olsson NO, Lorcerie B, Guillevin L, Mouthon L, Saas P, Bateman A, Martin L, Janikashvili N, Larmonier N, Bonnotte B (2012) Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum 64(11):3788–3798.  https://doi.org/10.1002/art.34647 CrossRefGoogle Scholar
  10. 10.
    van der Geest KS, Abdulahad WH, Chalan P, Rutgers A, Horst G, Huitema MG, Roffel MP, Roozendaal C, Kluin PM, Bos NA, Boots AM, Brouwer E (2014) Disturbed B cell homeostasis in newly diagnosed giant cell arteritis and polymyalgia rheumatica. Arthritis Rheumatol 66(7):1927–1938.  https://doi.org/10.1002/art.38625 CrossRefGoogle Scholar
  11. 11.
    Ciccia F, Rizzo A, Ferrante A, Guggino G, Croci S, Cavazza A, Salvarani C, Triolo G (2017) New insights into the pathogenesis of giant cell arteritis. Autoimmun Rev 16(7):675–683.  https://doi.org/10.1016/j.autrev.2017.05.004 CrossRefGoogle Scholar
  12. 12.
    Dejaco C, Ramiro S, Duftner C, Besson FL, Bley TA, Blockmans D, Brouwer E, Cimmino MA, Clark E, Dasgupta B, Diamantopoulos AP, Direskeneli H, Iagnocco A, Klink T, Neill L, Ponte C, Salvarani C, Slart R, Whitlock M, Schmidt WA (2018) EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis 77(5):636–643.  https://doi.org/10.1136/annrheumdis-2017-212649 CrossRefGoogle Scholar
  13. 13.
    Carmona FD, Martin J, Gonzalez-Gay MA (2015) Genetics of vasculitis. Curr Opin Rheumatol 27(1):10–17.  https://doi.org/10.1097/BOR.0000000000000124 CrossRefGoogle Scholar
  14. 14.
    Carmona FD, Vaglio A, Mackie SL, Hernandez-Rodriguez J, Monach PA, Castaneda S, Solans R, Morado IC, Narvaez J, Ramentol-Sintas M, Pease CT, Dasgupta B, Watts R, Khalidi N, Langford CA, Ytterberg S, Boiardi L, Beretta L, Govoni M, Emmi G, Bonatti F, Cimmino MA, Witte T, Neumann T, Holle J, Schonau V, Sailler L, Papo T, Haroche J, Mahr A, Mouthon L, Molberg O, Diamantopoulos AP, Voskuyl A, Brouwer E, Daikeler T, Berger CT, Molloy ES, O'Neill L, Blockmans D, Lie BA, McLaren P, Vyse TJ, Wijmenga C, Allanore Y, Koeleman BPC, Barrett JH, Cid MC, Salvarani C, Merkel PA, Morgan AW, Gonzalez-Gay MA, Martin J (2017) A genome-wide association study identifies risk alleles in plasminogen and P4HA2 associated with Giant cell arteritis. Am J Hum Genet 100(1):64–74.  https://doi.org/10.1016/j.ajhg.2016.11.013 CrossRefGoogle Scholar
  15. 15.
    Serrano A, Marquez A, Mackie SL, Carmona FD, Solans R, Miranda-Filloy JA, Hernandez-Rodriguez J, Cid MC, Castaneda S, Morado IC, Narvaez J, Blanco R, Sopena B, Garcia-Villanueva MJ, Monfort J, Ortego-Centeno N, Unzurrunzaga A, Mari-Alfonso B, Sanchez Martin J, de Miguel E, Magro C, Raya E, Braun N, Latus J, Molberg O, Lie BA, Moosig F, Witte T, Morgan AW, Gonzalez-Gay MA, Martin J (2013) Identification of the PTPN22 functional variant R620W as susceptibility genetic factor for giant cell arteritis. Ann Rheum Dis 72(11):1882–1886.  https://doi.org/10.1136/annrheumdis-2013-203641 CrossRefGoogle Scholar
  16. 16.
    Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398.  https://doi.org/10.1038/nature05913 CrossRefGoogle Scholar
  17. 17.
    Lai WKM, Pugh BF (2017) Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 18(9):548–562.  https://doi.org/10.1038/nrm.2017.47 CrossRefGoogle Scholar
  18. 18.
    Coit P, Direskeneli H, Sawalha AH (2018) An update on the role of epigenetics in systemic vasculitis. Curr Opin Rheumatol 30(1):4–15.  https://doi.org/10.1097/BOR.0000000000000451 CrossRefGoogle Scholar
  19. 19.
    Jeltsch A, Jurkowska RZ (2014) New concepts in DNA methylation. Trends Biochem Sci 39(7):310–318.  https://doi.org/10.1016/j.tibs.2014.05.002 CrossRefGoogle Scholar
  20. 20.
    Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27.  https://doi.org/10.1016/j.cell.2012.06.013 CrossRefGoogle Scholar
  21. 21.
    Frank-Bertoncelj M, Gay S (2014) The epigenome of synovial fibroblasts: an underestimated therapeutic target in rheumatoid arthritis. Arthritis Res Ther 16(3):117.  https://doi.org/10.1186/ar4596 CrossRefGoogle Scholar
  22. 22.
    Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500.  https://doi.org/10.1038/nrg.2016.59 CrossRefGoogle Scholar
  23. 23.
    Klein K, Kabala PA, Grabiec AM, Gay RE, Kolling C, Lin LL, Gay S, Tak PP, Prinjha RK, Ospelt C, Reedquist KA (2016) The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann Rheum Dis 75(2):422–429.  https://doi.org/10.1136/annrheumdis-2014-205809 CrossRefGoogle Scholar
  24. 24.
    Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123.  https://doi.org/10.1038/nature09589 CrossRefGoogle Scholar
  25. 25.
    Karlsson O, Baccarelli AA (2016) Environmental health and long non-coding RNAs. Curr Environ Health Rep 3(3):178–187.  https://doi.org/10.1007/s40572-016-0092-1 CrossRefGoogle Scholar
  26. 26.
    Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278(10):1598–1609.  https://doi.org/10.1111/j.1742-4658.2011.08089.x CrossRefGoogle Scholar
  27. 27.
    Burja B, Kuret T, Sodin-Semrl S, Lakota K, Rotar Z, Jese R, Mrak-Poljsak K, Zigon P, Thallinger GG, Feichtinger J, Cucnik S, Tomsic M, Praprotnik S, Hocevar A (2018) A concise review of significantly modified serological biomarkers in giant cell arteritis, as detected by different methods. Autoimmun Rev 17(2):188–194.  https://doi.org/10.1016/j.autrev.2017.11.022 CrossRefGoogle Scholar
  28. 28.
    Lakota K, Feichtinger J, Burja B, Kuret T, Žigon P, Rotar Ž, Ješe R, Sodin-Šemrl S, Čučnik S, Thallinger G, Tomšič M, Hočevar A (2017) Utility of serological parameters in giant cell arteritis for predicting disease complications. Ann Rheum Dis 76:219Google Scholar
  29. 29.
    Weyand CM, Hicok KC, Hunder GG, Goronzy JJ (1994) Tissue cytokine patterns in patients with polymyalgia rheumatica and giant cell arteritis. Ann Intern Med 121(7):484–491CrossRefGoogle Scholar
  30. 30.
    Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM (2010) Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121(7):906–915.  https://doi.org/10.1161/CIRCULATIONAHA.109.872903 CrossRefGoogle Scholar
  31. 31.
    Hernández-Rodríguez J, Segarra M, Vilardell C, Sánchez M, García-Martínez A, Esteban MJ, Queralt C, Grau JM, Urbano-Márquez A, Palacín A, Colomer D, Cid MC (2004) Tissue production of pro-inflammatory cytokines (IL-1beta, TNFalpha and IL-6) correlates with the intensity of the systemic inflammatory response and with corticosteroid requirements in giant-cell arteritis. Rheumatology (Oxford) 43(3):294–301.  https://doi.org/10.1093/rheumatology/keh058 CrossRefGoogle Scholar
  32. 32.
    Ciccia F, Rizzo A, Guggino G, Cavazza A, Alessandro R, Maugeri R, Cannizzaro A, Boiardi L, Iacopino DG, Salvarani C, Triolo G (2015) Difference in the expression of IL-9 and IL-17 correlates with different histological pattern of vascular wall injury in giant cell arteritis. Rheumatology (Oxford) 54(9):1596–1604.  https://doi.org/10.1093/rheumatology/kev102 CrossRefGoogle Scholar
  33. 33.
    Ciccia F, Alessandro R, Rizzo A, Principe S, Raiata F, Cavazza A, Guggino G, Accardo-Palumbo A, Boiardi L, Ferrante A, Principato A, Giardina A, De Leo G, Salvarani C, Triolo G (2011) Expression of interleukin-32 in the inflamed arteries of patients with giant cell arteritis. Arthritis Rheum 63(7):2097–2104.  https://doi.org/10.1002/art.30374 CrossRefGoogle Scholar
  34. 34.
    Ciccia F, Rizzo A, Maugeri R, Alessandro R, Croci S, Guggino G, Cavazza A, Raimondo S, Cannizzaro A, Iacopino DG, Salvarani C, Triolo G (2016) Ectopic expression of CXCL13, BAFF, APRIL and LT-β is associated with artery tertiary lymphoid organs in giant cell arteritis. Ann Rheum Dis 76(1):235–243.  https://doi.org/10.1136/annrheumdis-2016-209217 CrossRefGoogle Scholar
  35. 35.
    Ciccia F, Alessandro R, Rizzo A, Raimondo S, Giardina A, Raiata F, Boiardi L, Cavazza A, Guggino G, De Leo G, Salvarani C, Triolo G (2013) IL-33 is overexpressed in the inflamed arteries of patients with giant cell arteritis. Ann Rheum Dis 72(2):258–264.  https://doi.org/10.1136/annrheumdis-2012-201309 CrossRefGoogle Scholar
  36. 36.
    Espígol-Frigolé G, Corbera-Bellalta M, Planas-Rigol E, Lozano E, Segarra M, García-Martínez A, Prieto-González S, Hernández-Rodríguez J, Grau JM, Rahman MU, Cid MC (2013) Increased IL-17A expression in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis. Ann Rheum Dis 72(9):1481–1487.  https://doi.org/10.1136/annrheumdis-2012-201836 CrossRefGoogle Scholar
  37. 37.
    Corbera-Bellalta M, García-Martínez A, Lozano E, Planas-Rigol E, Tavera-Bahillo I, Alba MA, Prieto-González S, Butjosa M, Espígol-Frigolé G, Hernández-Rodríguez J, Fernández PL, Roux-Lombard P, Dayer JM, Rahman MU, Cid MC (2014) Changes in biomarkers after therapeutic intervention in temporal arteries cultured in Matrigel: a new model for preclinical studies in giant-cell arteritis. Ann Rheum Dis 73(3):616–623.  https://doi.org/10.1136/annrheumdis-2012-202883 CrossRefGoogle Scholar
  38. 38.
    Lakota K, Kuret T, Žigon P, Rotar Ž, Tomšič M, Čučnik S, Sodin-Šemrl S, Hočevar A (2015) Biomarkers in temporal artery biopsies and sera of patients with giant cell arteritis. Arthritis Rheumatology 67(suppl 10)Google Scholar
  39. 39.
    Segarra M, García-Martínez A, Sánchez M, Hernández-Rodríguez J, Lozano E, Grau JM, Cid MC (2007) Gelatinase expression and proteolytic activity in giant-cell arteritis. Ann Rheum Dis 66(11):1429–1435.  https://doi.org/10.1136/ard.2006.068148 CrossRefGoogle Scholar
  40. 40.
    Rodríguez-Pla A, Martínez-Murillo F, Savino PJ, Eagle RC, Seo P, Soloski MJ (2009) MMP-12, a novel matrix metalloproteinase associated with giant cell arteritis. Rheumatology (Oxford) 48(11):1460–1461.  https://doi.org/10.1093/rheumatology/kep271 CrossRefGoogle Scholar
  41. 41.
    Lozano E, Segarra M, Corbera-Bellalta M, García-Martínez A, Espígol-Frigolé G, Plà-Campo A, Hernández-Rodríguez J, Cid MC (2010) Increased expression of the endothelin system in arterial lesions from patients with giant-cell arteritis: association between elevated plasma endothelin levels and the development of ischaemic events. Ann Rheum Dis 69(2):434–442.  https://doi.org/10.1136/ard.2008.105692 CrossRefGoogle Scholar
  42. 42.
    Visvanathan S, Rahman MU, Hoffman GS, Xu S, García-Martínez A, Segarra M, Lozano E, Espígol-Frigolé G, Hernández-Rodríguez J, Cid MC (2011) Tissue and serum markers of inflammation during the follow-up of patients with giant-cell arteritis--a prospective longitudinal study. Rheumatology (Oxford) 50(11):2061–2070.  https://doi.org/10.1093/rheumatology/ker163 CrossRefGoogle Scholar
  43. 43.
    Manku S, Wong W, Luo Z, Seidman MA, Alabdurubalnabi Z, Rey K, Enns W, Avina-Zubieta JA, Shojania K, Choy JC (2018) IL-6 expression is correlated with increased T-cell proliferation and survival in the arterial wall in giant cell arteritis. Cardiovasc Pathol 33:55–61.  https://doi.org/10.1016/j.carpath.2018.01.004 CrossRefGoogle Scholar
  44. 44.
    Zerbini A, Muratore F, Boiardi L, Ciccia F, Bonacini M, Belloni L, Cavazza A, Cimino L, Moramarco A, Alessandro R, Rizzo A, Parmeggiani M, Salvarani C, Croci S (2018) Increased expression of interleukin-22 in patients with giant cell arteritis. Rheumatology (Oxford) 57(1):64–72.  https://doi.org/10.1093/rheumatology/kex334 CrossRefGoogle Scholar
  45. 45.
    Regent A, Ly KH, Groh M, Khifer C, Lofek S, Clary G, Chafey P, Baud V, Broussard C, Federici C, Labrousse F, Mesturoux L, Le Jeunne C, Vidal E, Brezin A, Witko-Sarsat V, Guillevin L, Mouthon L (2017) Molecular analysis of vascular smooth muscle cells from patients with giant cell arteritis: targeting endothelin-1 receptor to control proliferation. Autoimmun Rev 16(4):398–406.  https://doi.org/10.1016/j.autrev.2017.02.006 CrossRefGoogle Scholar
  46. 46.
    Coit P, De Lott LB, Nan B, Elner VM, Sawalha AH (2016) DNA methylation analysis of the temporal artery microenvironment in giant cell arteritis. Ann Rheum Dis 75(6):1196–1202.  https://doi.org/10.1136/annrheumdis-2014-207116 CrossRefGoogle Scholar
  47. 47.
    Croci S, Zerbini A, Boiardi L, Muratore F, Bisagni A, Nicoli D, Farnetti E, Pazzola G, Cimino L, Moramarco A, Cavazza A, Casali B, Parmeggiani M, Salvarani C (2016) MicroRNA markers of inflammation and remodelling in temporal arteries from patients with giant cell arteritis. Ann Rheum Dis 75(8):1527–1533.  https://doi.org/10.1136/annrheumdis-2015-207846 CrossRefGoogle Scholar
  48. 48.
    Kermani TA, Dasgupta B (2017) Current and emerging therapies in large-vessel vasculitis. Rheumatology.  https://doi.org/10.1093/rheumatology/kex385
  49. 49.
    Ciechomska M, O'Reilly S (2016) Epigenetic modulation as a therapeutic Prospect for treatment of autoimmune rheumatic diseases. Mediat Inflamm 2016:9607946–9607911.  https://doi.org/10.1155/2016/9607946 CrossRefGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2018

Authors and Affiliations

  1. 1.Department of RheumatologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
  2. 2.Institute of Computational BiotechnologyGraz University of TechnologyGrazAustria
  3. 3.OMICS Center GrazBioTechMed GrazGrazAustria
  4. 4.Department of Rheumatology, Center of Experimental RheumatologyUniversity Hospital ZurichSchlierenSwitzerland
  5. 5.Faculty of Mathematics, Natural Science and Information TechnologiesUniversity of PrimorskaKoperSlovenia
  6. 6.Faculty of PharmacyLjubljanaSlovenia
  7. 7.Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations