Comparative evaluation of therapeutic efficacy of intra-articular oxaceprol with conventional modalities in osteoarthritis animal model

  • Harpreet Singh Pawar
  • Nimmy Kanichai Francis
  • Tushar Hota
  • Nabam Peter
  • Analava Mitra
Original Article
  • 23 Downloads

Abstract

The duration and dose-dependent side effects of conventional intra-articular corticosteroid treatment in osteoarthritis (OA) like cartilage damage and chondrocyte toxicity warrant the search for alternative therapeutics. Oxaceprol, a recognized oral therapeutic agent for osteoarthritis, is yet to be explored for its intra-articular route of administration confirming better safety profile. In this study, a comparative evaluation of intra-articular oxaceprol and corticosteroid is carried out in osteoarthritis rabbit model. Osteoarthritis was induced by monosodium iodoacetate in rabbits. After randomization into three groups of five animals each: OA with intra-articular injection of saline, OA with intra-articular injection of oxaceprol, and OA with intra-articular injection of corticosteroids, treatment efficacy was analyzed by evaluation of inflammation through knee swelling, pain assessment by wire walking, and hot plate method. Further biopsies were collected for histological characterization. Intra-articular oxaceprol and corticosteroids reduced 20.5 and 24.5% knee swelling respectively within 4 weeks compared to those in control osteoarthritic rabbits. Oxaceprol exhibited analgesic action in visual analogue scoring of wire walking method. Hot plate test further confirmed drastic minimization of pain in oxaceprol intervention. Histological investigation suggested that application of oxaceprol has the abilities to protect articular cartilages from degenerative changes that occur in osteoarthritis. Marked improvement both in bone and cellular matrixes was observed in oxaceprol-treated group while gross lesions were visible and consisted of a well-demarcated area of cartilage erosion in control group. Intra-articular injection of oxaceprol showed remarkable improvement of articular cartilage in chemically induced osteoarthritic rabbits.

Keywords

Articular cartilage Intra-articular corticosteroid Osteoarthritis Oxaceprol 

Notes

Acknowledgements

We acknowledge the resource support from Dr. Anjan Adhikari, Associate Professor, Department of Pharmacology, R.G. Kar Medical College, Kolkata. We are also thankful to IIT Kharagpur for infrastructural support.

Compliance with ethical standards

Disclosures

None.

References

  1. 1.
    Plotnikoff R, Karunamuni N, Lytvyak E, Penfold C, Schopflocher D, Imayama I, Johnson ST, Raine K (2015) Osteoarthritis prevalence and modifiable factors: a population study. BMC Public Health 15(1):1195CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jonsson H, Olafsdottir S, Sigurdardottir S, Aspelund T, Eiriksdottir G, Sigurdsson S, Harris TB, Launer L, Gudnason V (2016) Incidence and prevalence of total joint replacements due to osteoarthritis in the elderly: risk factors and factors associated with late life prevalence in the AGES-Reykjavik Study. BMC Musculoskelet Disord 17(1):14CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Blanco FJ, Guitian R, Vázquez-Martul E, de Toro FJ, Galdo F (1998) Osteoarthritis chondrocytes die by apoptosis: a possible pathway for osteoarthritis pathology. Arthritis Rheumatol 41(2):284–289CrossRefGoogle Scholar
  4. 4.
    Henrotin Y, Gharbi M, Dierckxsens Y, Priem F, Marty M, Seidel L, Albert A, Heuse E, Bonnet V, Castermans C (2014) Decrease of a specific biomarker of collagen degradation in osteoarthritis, Coll2-1, by treatment with highly bioavailable curcumin during an exploratory clinical trial. BMC Complement Altern Med 14(1):159CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gelber AC (2015) Conventional medical therapy for osteoarthritis: current state of the evidence. Curr Opin Rheumatol 27(3):312–317CrossRefPubMedGoogle Scholar
  6. 6.
    Herrmann G, Steeger D, Klasser M, Wirbitzky J, Fürst M, Venbrocks R, Rohde H, Jungmichel D, Hildebrandt H, Parnham M (2000) Oxaceprol is a well-tolerated therapy for osteoarthritis with efficacy equivalent to diclofenac. Clin Rheumatol 19(2):99–104CrossRefPubMedGoogle Scholar
  7. 7.
    Chia SL, Sawaji Y, Burleigh A, McLean C, Inglis J, Saklatvala J, Vincent T (2009) Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses ADAMTS-5 and delays cartilage degradation in murine osteoarthritis. Arthritis Rheumatol 60(7):2019–2027CrossRefGoogle Scholar
  8. 8.
    Shah J, Mirza N, Patel V (2014) A comparative study for safety and efficacy of oxaceprol and diacerein in osteoarthritis of knee joints. PharmaTutor 2(6):108–114Google Scholar
  9. 9.
    Kruger K, Klasser M, Mossinger J, Becker U (2007) Oxaceprol—a randomised, placebo-controlled clinical study in osteoarthritis with a non-conventional non-steroidal anti-inflammatory drug. Clin Exp Rheumatol 25(1):29–34PubMedGoogle Scholar
  10. 10.
    Witte S, Lasek R, Victor N (2002) Meta-analysis of the efficacy of adenosylmethionine and oxaceprol in the treatment of osteoarthritisGoogle Scholar
  11. 11.
    Gu J, Chen N, Ding G, Zhang Z (2011) Determination of oxaceprol in rat plasma by LC–MS/MS and its application in a pharmacokinetic study. J Pharm Biomed Anal 54(1):173–178CrossRefPubMedGoogle Scholar
  12. 12.
    Kim J, Lee EY, Koh E-M, Cha H-S, Yoo B, Lee CK, Lee YJ, Ryu H, Lee KH, Song YW (2009) Comparative clinical trial of S-adenosylmethionine versus nabumetone for the treatment of knee osteoarthritis: an 8-week, multicenter, randomized, double-blind, double-dummy, phase IV study in Korean patients. Clin Ther 31(12):2860–2872CrossRefPubMedGoogle Scholar
  13. 13.
    Riera H, Barbara A, Aprile F, Maheu E, Mitrovic D (1989) Effect of oxaceprol on the synthesis and degradation in vitro of proteoglycans and proteins by calf articular cartilage explants. Revue du rhumatisme et des maladies osteo-articulaires 57(7–8):579–583Google Scholar
  14. 14.
    Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G (2005) Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev 2Google Scholar
  15. 15.
    Kon E, Mandelbaum B, Buda R, Filardo G, Delcogliano M, Timoncini A, Fornasari PM, Giannini S, Marcacci M (2011) Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthroscopy: J Arthrosc Relat Surg 27(11):1490–1501CrossRefGoogle Scholar
  16. 16.
    Lo GH, LaValley M, McAlindon T, Felson DT (2003) Intra-articular hyaluronic acid in treatment of knee osteoarthritis: a meta-analysis. JAMA 290(23):3115–3121CrossRefPubMedGoogle Scholar
  17. 17.
    Sampson S, Gerhardt M, Mandelbaum B (2008) Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr Rev Musculoskelet Med 1(3–4):165–174CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Spaková T, Rosocha J, Lacko M, Harvanová D, Gharaibeh A (2012) Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid. Am J Phys Med Rehabil 91(5):411–417CrossRefPubMedGoogle Scholar
  19. 19.
    Singh H, Francis N, Mitra A (2015) Current trends in osteoarthritis management—a short review. Medicine 3Google Scholar
  20. 20.
    Bajpayee AG, Wong CR, Bawendi MG, Frank EH, Grodzinsky AJ (2014) Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials 35(1):538–549CrossRefPubMedGoogle Scholar
  21. 21.
    Sarkar S, Mukhopadhyay A, Chaudhary A, Rajput M, Pawar HS, Mukherjee R, Das AK, Banerjee P, Chatterjee J (2017) Therapeutic interfaces of honey in diabetic wound pathology. Wound Med 18:21–32.  https://doi.org/10.1016/j.wndm.2017.07.001 CrossRefGoogle Scholar
  22. 22.
    Förster K (2000) Drug treatment of osteoarthritis: clinical aspects. Osteoarthritis Berlin Heidelberg New York: Springer-Verlag 66–81Google Scholar
  23. 23.
    Schuelert N, McDougall JJ (2009) Grading of monosodium iodoacetate-induced osteoarthritis reveals a concentration-dependent sensitization of nociceptors in the knee joint of the rat. Neurosci Lett 465(2):184–188CrossRefPubMedGoogle Scholar
  24. 24.
    Ionac M, Parnham M, Plauchithiu M, Brune K (1996) Oxaceprol, an atypical inhibitor of inflammation and joint damage. Pharmacol Res 33(6):367–373CrossRefPubMedGoogle Scholar
  25. 25.
    Chattopadhyay H, Auddy B, Sur T, Sana S, Datta S (2016) Accentuated transdermal application of glucosamine sulphate attenuates experimental osteoarthritis induced by monosodium iodoacetate. J Mater Chem B 4(25):4470–4481CrossRefGoogle Scholar
  26. 26.
    Andersen ML, Santos EH, Maria de Lourdes VS, da Silva AA, Tufik S (2004) Evaluation of acute and chronic treatments with Harpagophytum procumbens on Freund’s adjuvant-induced arthritis in rats. J Ethnopharmacol 91(2):325–330CrossRefPubMedGoogle Scholar
  27. 27.
    Das RK, Anura A, Pal M, Bag S, Majumdar S, Barui A, Chakraborty C, Ray AK, Sengupta S, Paul RR (2013) Epithelio-mesenchymal transitional attributes in oral sub-mucous fibrosis. Exp Mol Pathol 95(3):259–269CrossRefPubMedGoogle Scholar
  28. 28.
    Ostergaard K, Andersen CB, Petersen J, Bendtzen K, Salter DM (1999) Validity of histopathological grading of articular cartilage from osteoarthritic knee joints. Ann Rheum Dis 58(4):208–213CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sarkar S, Chaudhary A, Saha TK, Das AK, Chatterjee J (2018) Modulation of collagen population under honey assisted wound healing in diabetic rat model. Wound Med 20:7–17.  https://doi.org/10.1016/j.wndm.2017.12.001 CrossRefGoogle Scholar
  30. 30.
    Pawar HS, Francis NK, Rameshbabu AP, Dhara S (2016) 2,5-Dihydro-2,5-dimethoxyfuran crosslinked silk-chitosan blend tubular construct for vascular graft application. Materials Today Commun 8:139–147.  https://doi.org/10.1016/j.mtcomm.2016.07.005 CrossRefGoogle Scholar
  31. 31.
    Harris A, Schropp A, Messmer K (1998) Effects of oxaceprol on the microcirculation in ischemia/reperfusion injury. Eur J Med Res 3(4):182–188PubMedGoogle Scholar
  32. 32.
    Lachmann G, Siegemund B, Kusche W (1990) Pharmacokinetics and metabolism of 14C-oxaceprol in beagle dogs after intramuscular and oral administration. Arzneimittelforschung 40(2 Pt 1):200–206PubMedGoogle Scholar
  33. 33.
    Riera H, Aprile F, Mitrovic D (1991) Effet de l’oxacéprol sur la structure des protéoglycannes synthétisés par les chondrocytes articulaires de veau. Revue du rhumatisme et des maladies ostéo-articulaires 58(9):629–634PubMedGoogle Scholar
  34. 34.
    Collins JE, Losina E, Nevitt MC, Roemer FW, Guermazi A, Lynch JA, Katz JN, Kent Kwoh C, Kraus VB, Hunter DJ (2016) Semiquantitative imaging biomarkers of knee osteoarthritis progression: data from the Foundation for the National Institutes of health osteoarthritis biomarkers consortium. Arthritis Rheumatol 68(10):2422–2431CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cone K, Krivitsky R, Warner E, Imbert I, Allen J, Henderson T, Rosen CJ, Bilsky EJ, King T, Stevenson GW (2016) Effects of MIA-induced osteoarthritis on hind limb weight bearing and bone biology endpoints in rats with or without access to running wheels. FASEB J 30(1 Supplement):928.923Google Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2018

Authors and Affiliations

  • Harpreet Singh Pawar
    • 1
  • Nimmy Kanichai Francis
    • 2
  • Tushar Hota
    • 2
  • Nabam Peter
    • 2
  • Analava Mitra
    • 2
  1. 1.National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR)AgraIndia
  2. 2.Indian Institute of TechnologyKharagpurIndia

Personalised recommendations