Advertisement

Clinical Rheumatology

, Volume 37, Issue 7, pp 1773–1782 | Cite as

Proteomic analysis of plasma from rheumatoid arthritis patients with mild cognitive impairment

  • Li Yang
  • Qing-Hua Zou
  • Yan Zhang
  • Yin Shi
  • Chun-Rong Hu
  • Cai-Xia Hui
  • Xiao-Fei Liu
  • Yong-Fei FangEmail author
Original Article

Abstract

Rheumatoid arthritis (RA) patients may suffer from comorbid neuropsychiatric symptoms including mild cognitive impairment (MCI). Although comorbidity of MCI is common, there are currently no validated plasma biomarkers to aid MCI diagnosis. This study screened plasma from patients with RA with and without comorbid MCI to identify potential biomarkers useful in the differential diagnosis of comorbid MCI. Plasma samples were collected from patients with RA without comorbid MCI, with comorbid MCI, and from healthy controls. Plasma samples were examined by tandem mass tags (TMT) combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MSMS) to analyze protein expression. Differentially expressed proteins were identified by bioinformatics and validated by enzyme-linked immunosorbent assay (ELISA). A total of 746 reliable proteins and 158 differentially expressed proteins were identified. Fourteen patients with RA-MCI showed differential protein expression (six proteins upregulated and eight proteins downregulated) compared with those patients without MCI and with healthy controls. Bioinformatics analysis showed that the differentially expressed proteins were primarily involved in biological processes, such as cell adhesion, coagulation, apoptosis, and body fluid regulation. The results of the ELISA experiments, similar to those of the proteomic analysis, demonstrated that sonic hedgehog (SHH) was upregulated and serum paraoxonase (TTR) was downregulated in patients with RA-MCI. These results indicate that SHH and TTR may be candidate plasma biomarkers that could be used to distinguish patients with RA and comorbid MCI from those without comorbid MCI.

Keywords

Mild cognitive impairment Plasma Proteomics Rheumatoid arthritis 

Notes

Acknowledgements

We would like to thank Ya-Lan Zhang for help with the neuropsychological tests and Hong Wu and Qing-Xia You for their help collecting plasma samples. We also would like to thank Editage [www.editage.cn] for English language editing, and all the subjects and their families who agreed to participate in our research.

Funding information

This study was supported by the General Program of National Natural Science Foundation of China (81373180).

Compliance with ethical standards

The study was approved by the Ethics Committee of the First Affiliated Hospital of the Third Military Medical University and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All subjects gave their informed consent.

Disclosures

None.

References

  1. 1.
    Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388(10055):2023–2038.  https://doi.org/10.1016/S0140-6736(16)30173-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Joaquim AF, Appenzeller S (2015) Neuropsychiatric manifestations in rheumatoid arthritis. Autoimmun Rev 14(12):1116–1122.  https://doi.org/10.1016/j.autrev.2015.07.015 CrossRefPubMedGoogle Scholar
  3. 3.
    Simos P, Ktistaki G, Dimitraki G, Papastefanakis E, Kougkas N, Fanouriakis A, Gergianaki I, Bertsias G, Sidiropoulos P, Karademas EC (2016) Cognitive deficits early in the course of rheumatoid arthritis. J Clin Exp Neuropsychol 38(7):820–829.  https://doi.org/10.1080/13803395.2016.1167173 CrossRefPubMedGoogle Scholar
  4. 4.
    Shin SY, Katz P, Wallhagen M, Julian L (2012) Cognitive impairment in persons with rheumatoid arthritis. Arthritis Care Res (Hoboken) 64:1144–1150.  https://doi.org/10.1002/acr.21683 CrossRefGoogle Scholar
  5. 5.
    Hamed SA, Selim ZI, Elattar AM, Elserogy YM, Ahmed EA, Mohamed HO (2012) Assessment of biocorrelates for brain involvement in female patients with rheumatoid arthritis. Clin Rheumatol 31(1):123–132.  https://doi.org/10.1007/s10067-011-1795-1 CrossRefPubMedGoogle Scholar
  6. 6.
    Shin SY, Julian L, Katz P (2013) The relationship between cognitive function and physical function in rheumatoid arthritis. J Rheumatol 40(3):236–243.  https://doi.org/10.3899/jrheum.120871 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B (2006) Mild cognitive impairment. Lancet 367(9518):1262–1270.  https://doi.org/10.1016/S0140-6736(06)68542-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256(3):240–246.  https://doi.org/10.1111/j.1365-2796.2004.01380.x CrossRefPubMedGoogle Scholar
  9. 9.
    Golob EJ, Irimajiri R, Starr A (2007) Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain 130(3):740–752.  https://doi.org/10.1093/brain/awl375 CrossRefPubMedGoogle Scholar
  10. 10.
    Ravaglia G, Forti P, Montesi F, Lucicesare A, Pisacane N, Rietti E, Dalmonte E, Bianchin M, Mecocci P (2008) Mild cognitive impairment: epidemiology and dementia risk in an elderly Italian population. J Am Geriatr Soc 56(1):51–58.  https://doi.org/10.1111/j.1532-5415.2007.01503.x CrossRefPubMedGoogle Scholar
  11. 11.
    Janoutova J, Sery O, Hosak L, Janout V (2015) Is mild cognitive impairment a precursor of Alzheimer’s disease? Short review. Cent Eur J Public Health 23(4):365–367.  https://doi.org/10.21101/cejph.a4414 CrossRefPubMedGoogle Scholar
  12. 12.
    Sanchez-Torres AM, Elosua MR, Lorente-Omenaca R, Moreno-Izco L, Peralta V, Ventura J, Cuesta MJ (2016) Using the cognitive assessment interview to screen cognitive impairment in psychosis. Eur Arch Psychiatry Clin Neurosci 266(7):629–637.  https://doi.org/10.1007/s00406-016-0700-y CrossRefPubMedGoogle Scholar
  13. 13.
    Trzepacz PT, Hochstetler H, Wang S, Walker B, Saykin AJ (2015) Relationship between the Montreal Cognitive Assessment and Mini-mental State Examination for assessment of mild cognitive impairment in older adults. BMC Geriatr 15(1):107.  https://doi.org/10.1186/s12877-015-0103-3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CR, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovsky J, Wolfe F, Hawker G (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581.  https://doi.org/10.1002/art.27584 CrossRefPubMedGoogle Scholar
  15. 15.
    Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699.  https://doi.org/10.1111/j.1532-5415.2005.53221.x CrossRefPubMedGoogle Scholar
  16. 16.
    Pincus T, Summey JA, Soraci SJ, Wallston KA, Hummon NP (1983) Assessment of patient satisfaction in activities of daily living using a modified Stanford Health Assessment Questionnaire. Arthritis Rheum 26(11):1346–1353.  https://doi.org/10.1002/art.1780261107 CrossRefPubMedGoogle Scholar
  17. 17.
    Kroenke K, Spitzer RL, Williams JB (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16(9):606–613.  https://doi.org/10.1046/j.1525-1497.2001.016009606.x CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Spitzer RL, Kroenke K, Williams JB, Lowe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 166(10):1092–1097.  https://doi.org/10.1001/archinte.166.10.1092 CrossRefPubMedGoogle Scholar
  19. 19.
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85.  https://doi.org/10.1016/0003-2697(85)90442-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25(9):1327–1333.  https://doi.org/10.1002/elps.200305844 CrossRefPubMedGoogle Scholar
  21. 21.
    Westbrook JA, Noirel J, Brown JE, Wright PC, Evans CA (2015) Quantitation with chemical tagging reagents in biomarker studies. Proteomics Clin Appl 9(3-4):295–300.  https://doi.org/10.1002/prca.201400120 CrossRefPubMedGoogle Scholar
  22. 22.
    Westbrook JA, Noirel J, Brown JE, Wright PC, Evans CA (2015) Quantitation with chemical tagging reagents in biomarker studies. Proteomics Clin Appl 9(3-4):295–300.  https://doi.org/10.1002/prca.201400120 CrossRefPubMedGoogle Scholar
  23. 23.
    Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904.  https://doi.org/10.1021/ac0262560 CrossRefPubMedGoogle Scholar
  24. 24.
    Dayon L, Sanchez JC (2012) Relative protein quantification by MS/MS using the tandem mass tag technology. Methods Mol Biol 893:115–127.  https://doi.org/10.1007/978-1-61779-885-6_9 CrossRefPubMedGoogle Scholar
  25. 25.
    Hung CW, Tholey A (2012) Tandem mass tag protein labeling for top-down identification and quantification. Anal Chem 84(1):161–170.  https://doi.org/10.1021/ac202243r CrossRefPubMedGoogle Scholar
  26. 26.
    Ferraccioli G, Carbonella A, Gremese E, Alivernini S (2012) Rheumatoid arthritis and Alzheimer’s disease: genetic and epigenetic links in inflammatory regulation. Discov Med 14(79):379–388PubMedGoogle Scholar
  27. 27.
    Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6):358–372.  https://doi.org/10.1038/nrn3880 CrossRefPubMedGoogle Scholar
  28. 28.
    Yokoyama JS, Wang Y, Schork AJ, Thompson WK, Karch CM, Cruchaga C, McEvoy LK, Witoelar A, Chen CH, Holland D, Brewer JB, Franke A, Dillon WP, Wilson DM, Mukherjee P, Hess CP, Miller Z, Bonham LW, Shen J, Rabinovici GD, Rosen HJ, Miller BL, Hyman BT, Schellenberg GD, Karlsen TH, Andreassen OA, Dale AM, Desikan RS (2016) Association between genetic traits for immune-mediated diseases and Alzheimer disease. JAMA Neurol 73(6):691–697.  https://doi.org/10.1001/jamaneurol.2016.0150 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Takagi M, Ishigaki Y, Uno K, Sawada S, Imai J, Kaneko K, Hasegawa Y, Yamada T, Tokita A, Iseki K, Kanno S, Nishio Y, Katagiri H, Mori E (2013) Cognitive dysfunction associated with anti-glutamic acid decarboxylase autoimmunity: a case-control study. BMC Neurol 13(1):76.  https://doi.org/10.1186/1471-2377-13-76 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Huehnchen P, Prozorovski T, Klaissle P, Lesemann A, Ingwersen J, Wolf SA, Kupsch A, Aktas O, Steiner B (2011) Modulation of adult hippocampal neurogenesis during myelin-directed autoimmune neuroinflammation. Glia 59(1):132–142.  https://doi.org/10.1002/glia.21082 CrossRefPubMedGoogle Scholar
  31. 31.
    Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M (1999) Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci 11(9):3199–3214.  https://doi.org/10.1046/j.1460-9568.1999.00777.x CrossRefPubMedGoogle Scholar
  32. 32.
    Wang M, Zhu S, Peng W, Li Q, Li Z, Luo M, Feng X, Lin Z, Huang J (2014) Sonic hedgehog signaling drives proliferation of synoviocytes in rheumatoid arthritis: a possible novel therapeutic target. J Immunol Res 2014:401903–401910.  https://doi.org/10.1155/2014/401903 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bouslama-Oueghlani L, Wehrle R, Doulazmi M, Chen XR, Jaudon F, Lemaigre-Dubreuil Y, Rivals I, Sotelo C, Dusart I (2012) Purkinje cell maturation participates in the control of oligodendrocyte differentiation: role of sonic hedgehog and vitronectin. PLoS One 7(11):e49015.  https://doi.org/10.1371/journal.pone.0049015 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pitter KL, Tamagno I, Feng X, Ghosal K, Amankulor N, Holland EC, Hambardzumyan D (2014) The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions. Glia 62(10):1595–1607.  https://doi.org/10.1002/glia.22702 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Xu Q, Yuan X, Liu G, Black KL, JS Y (2008) Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells 26(12):3018–3026.  https://doi.org/10.1634/stemcells.2008-0459 CrossRefPubMedGoogle Scholar
  36. 36.
    Saelices L, Johnson LM, Liang WY, Sawaya MR, Cascio D, Ruchala P, Whitelegge J, Jiang L, Riek R, Eisenberg DS (2015) Uncovering the mechanism of aggregation of human transthyretin. J Biol Chem 290(48):28932–28943.  https://doi.org/10.1074/jbc.M115.659912 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li X, Buxbaum JN (2011) Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease? Mol Neurodegener 6(1):79.  https://doi.org/10.1186/1750-1326-6-79 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bradley-Whitman MA, Abner E, Lynn BC, Lovell MA (2015) A novel plasma based biomarker of Alzheimer’s disease. J Alzheimers Dis 47(3):761–771.  https://doi.org/10.3233/JAD-150183 CrossRefPubMedGoogle Scholar
  39. 39.
    Hye A, Riddoch-Contreras J, Baird AL, Ashton NJ, Bazenet C, Leung R, Westman E, Simmons A, Dobson R, Sattlecker M, Lupton M, Lunnon K, Keohane A, Ward M, Pike I, Zucht HD, Pepin D, Zheng W, Tunnicliffe A, Richardson J, Gauthier S, Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S (2014) Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement 10(6):799–807.  https://doi.org/10.1016/j.jalz.2014.05.1749 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ribeiro CA, Santana I, Oliveira C, Baldeiras I, Moreira J, Saraiva MJ, Cardoso I (2012) Transthyretin decrease in plasma of MCI and AD patients: investigation of mechanisms for disease modulation. Curr Alzheimer Res 9(8):881–889.  https://doi.org/10.2174/156720512803251057 CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2018

Authors and Affiliations

  • Li Yang
    • 1
  • Qing-Hua Zou
    • 1
  • Yan Zhang
    • 2
  • Yin Shi
    • 1
  • Chun-Rong Hu
    • 2
  • Cai-Xia Hui
    • 1
  • Xiao-Fei Liu
    • 1
  • Yong-Fei Fang
    • 1
    Email author
  1. 1.Department of RheumatologyFirst Affiliated Hospital of Third Military Medical UniversityChongqingChina
  2. 2.Department of Psychosomatic MedicineThe Ninth People’s Hospital of ChongqingChongqingChina

Personalised recommendations