Clinical Rheumatology

, Volume 37, Issue 4, pp 927–933 | Cite as

IRAK2 is associated with susceptibility to rheumatoid arthritis

  • Hana Ben Hassine
  • Rim Sghiri
  • Elyes Chabchoub
  • Asma Boumiza
  • Foued Slama
  • Khadija Baccouche
  • Zahid Shakoor
  • Adel Almogren
  • Christina Mariaselvam
  • Ryad Tamouza
  • Elyes Bouajina
  • Ramzi Zemni
Original Article
  • 118 Downloads

Abstract

This study was performed to investigate the association of the single nucleotide polymorphisms of interleukin-1 receptor-associated kinase 2 (IRAK2) rs3844283 and rs708035 with rheumatoid arthritis (RA). IRAK2 rs3844283 and rs708035genotyping was determined by mutagenically separated PCR with specifically designed primers in a cohort of 222 (30 men, 192 women, mean age 49 years) adult RA patients and 224 matched controls. IRAK2 rs3844283 C allele was detected in 66% of RA patients and 74% of controls. The CC genotype was the most frequent genotype in both RA patients (45.5%) and the controls (56.3%). The G allele was found to be associated with RA susceptibility (OR = 1.47, 95% CI = 1.10–1.96, p = 0.008). The GG genotype was found to be associated with RA in the co-dominant and the dominant models (OR = 2.03, 95% CI = 1.08–3.81, p = 0.042 and OR = 1.54, 95% CI = 1.06–2.23, p = 0.023, respectively). IRAK2 rs708035 was found not to be in the Hardy-Weinberg equilibrium. The hyperfunctional IRAK2 rs708035 A allele was more frequent in RA patients than in controls (69.9 versus 62.2%, respectively, p = 0.015). Moreover, IRAK2 rs708035 and IRAK2 rs3844283 were in linkage disequilibrium and the GA haplotype was significantly more frequent in RA patients than in controls (p = 0.034). This study for the first time ever reports the association of IRAK2 rs3844283, IRAK2 rs708035, and the corresponding haplotypes with RA. Functional studies are recommended to elucidate the risk posed by the GA haplotype for the development of RA.

Keywords

Anti-cyclic citrullinated peptide antibodies C-reactive protein Disease activity score 28 Haplotype construction IRAK2 rs3844283 IRAK2 rs708035 Joint erosion Rheumatoid arthritis Rheumatoid factor Sharp/van der Heijde score 

Notes

Compliance with ethical standards

This study was approved by Farhat Hached University Hospital ethics committee. Participants were enrolled in the study after obtaining their informed consent.

Disclosures

None.

References

  1. 1.
    Sun SC, Chang JH, Jin J (2013) Regulation of NF-kB in autoimmunity. Trends Immunol 34:282–289CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cho ML, Kang JW, Moon YM et al (2006) STAT3 and NF-kB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1receptor antagonist- deficient mice. J Immunol 176:5652–5661CrossRefPubMedGoogle Scholar
  3. 3.
    Yang XO, Pappu BP, Nurieva R et al (2008) T helper17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29–39CrossRefPubMedGoogle Scholar
  4. 4.
    Bondeson J, Foxwell B, Brennan F et al (1999) Defining therapeutic targets by using adenovirus: blocking NF-kB inhibits both inflammatory and destructive mechanisms in rheumatoid synovium but spares anti-inflammatory mediators. Proc Natl Acad Sci U S A 96:5668–5673CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Miagkov AV, Kovalenko DV, Brown CE et al (1998) NF-kB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci U S A 95:13859–13864CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Medzhitov R, Preston-Hurlburt P, Kopp E et al (1998) MyD88 is an adaptor protein in the Toll/IL-1 receptor family signaling pathways. Cell 2:253–258Google Scholar
  7. 7.
    Martin MU, Wesche H (2002) Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta 1592:265–280CrossRefPubMedGoogle Scholar
  8. 8.
    George J, Motshwene PG, Wang H et al (2011) Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. J BiolChem 286:1341–1353Google Scholar
  9. 9.
    Gay NJ, Gangloff M, O’Neill LA (2011) What the Myddosome structure tells us about the initiation of innate immunity. Trends Immunol 32:104–109CrossRefPubMedGoogle Scholar
  10. 10.
    Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78–83CrossRefPubMedGoogle Scholar
  11. 11.
    Muzio M, Ni J, Feng P et al (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:1612–1615CrossRefPubMedGoogle Scholar
  12. 12.
    Pauls E, Nanda SK, Smith H et al (2013) Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice. J Immunol 191:2717–2730CrossRefPubMedGoogle Scholar
  13. 13.
    Picard C, von Bernuth H, Ghandil P et al (2010) Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine 89:403–425CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chatzikyriakidou A, Voulgari PV, Georgiou I et al (2010) A polymorphism in the 3′-UTR of interleukin-1 receptor-associated kinase (IRAK1), a target gene of miR-146a, is associated with rheumatoid arthritis susceptibility. Joint Bone Spine 77:411–413CrossRefPubMedGoogle Scholar
  15. 15.
    Han TU, Cho SK, Kim T et al (2013) Association of an activity-enhancing variant of IRAK1 and an MECP2-IRAK1 haplotype with increased susceptibility to rheumatoid arthritis. Arthritis Rheum 65:590–59810CrossRefPubMedGoogle Scholar
  16. 16.
    Hassine HB, Boumiza A, Sghiri R et al (2017) Micro RNA-146a but not IRAK1 is associated with rheumatoid arthritis in the Tunisian population. Genet Test Mol Biomarkers 1:92–96CrossRefGoogle Scholar
  17. 17.
    Kaufman KM, Zhao J, Kelly JA et al (2013) Fine mapping of Xq28: both MECP2 and IRAK1 contribute to risk for systemiclupus erythematosus in multiple ancestral groups. Ann Rheum Dis 72:437–444CrossRefPubMedGoogle Scholar
  18. 18.
    Carmona FD, Cénit MC, Diaz-Gallo LM et al (2013) New insight on the Xq28 association with systemic sclerosis. Ann Rheum Dis 12:2032–2038CrossRefGoogle Scholar
  19. 19.
    Wang H, El Maadidi S, Fischer J et al (2015) Hypofunctional IRAK2 variant is associated with reduced spontaneous hepatitis C virus clearance. Hepatology 62:1375–1387CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang W, He T, Wang Q et al (2014) Interleukin-1 receptor-associated kinase-2 genetic variant rs708035 increases NF-κB activity through promoting TRAF6 ubiquitination. J BiolChem 289:12507–12519Google Scholar
  21. 21.
    Aletaha D, Neogi T, Silman AJ et al (2010) 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/ European League against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581CrossRefPubMedGoogle Scholar
  22. 22.
    Zhao JH, Curtis D, Sham PC (2000) Model-free analysis and permutation tests for allelic associations. Hum Hered 50:133–139CrossRefPubMedGoogle Scholar
  23. 23.
    MacGregor AJ, Snieder H, Rigby AS et al (2000) Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 43:30–37CrossRefPubMedGoogle Scholar
  24. 24.
    van der Woude D, Houwing-Duistermaat JJ, Toes RE et al (2009) Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum 60:916–923CrossRefPubMedGoogle Scholar
  25. 25.
    Deighton CM, Walker DJ, Griffiths ID et al (1989) The contribution of HLA to rheumatoid arthritis. Clin Genet 36:178–182CrossRefPubMedGoogle Scholar
  26. 26.
    Eyre S, Bowes J, Diogo D et al (2013) High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet 44:1336–1340CrossRefGoogle Scholar
  27. 27.
    Okada Y, Wu D, Trynka G et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381CrossRefPubMedGoogle Scholar
  28. 28.
    Szodoray P, Szabo Z, Kapitany A et al (2010) Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun Rev 9:140–143CrossRefPubMedGoogle Scholar
  29. 29.
    Davila L, Ranganathan P (2011) Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol 7:537–550CrossRefPubMedGoogle Scholar
  30. 30.
    Plant D, Bowes J, Potter C et al (2011) Genome-wide association study of genetic predictors of anti-tumor necrosis factor treatment efficacy in rheumatoid arthritis identifies associations with polymorphisms at seven loci. Arthritis Rheum 63:645–653CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Flannery S, Bowie AG (2010) The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochem Pharmacol 80:1981–1991CrossRefPubMedGoogle Scholar
  32. 32.
    Kawagoe T, Sato S, Matsushita K et al (2008) Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 9:684–691CrossRefPubMedGoogle Scholar
  33. 33.
    Ye H, Arron JR, Lamothe B et al (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418:443–447CrossRefPubMedGoogle Scholar
  34. 34.
    Swantek JL, Tsen MF, Cobb MH et al (2000) IL-1 receptor associated kinase modulates host responsiveness to endotoxin. J Immunol 164:4301–4306CrossRefPubMedGoogle Scholar
  35. 35.
    Wan Y, Xiao H, Affolter J et al (2009) Interleukin-1 receptor associated kinase 2 is critical for lipopolysaccharide-mediated post-transcriptional control. J Biol Chem 284:10367–10375CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Flannery SM, Keating SE, Szymak J. Human interleukin-1 receptor–associated kinase-2 is essential for Toll-like receptor–mediated transcriptional and post-transcriptional regulation of tumor necrosis factor alpha. J Biol Chem 286:23688–23697Google Scholar
  37. 37.
    Keating SE, Maloney GM, Moran EM et al (2007) IRAK2 participates in multiple toll-like receptor signaling pathways to NF kappa B via activation of TRAF6 ubiquitination. J BiolChem 282:33435–33443Google Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2017

Authors and Affiliations

  • Hana Ben Hassine
    • 1
  • Rim Sghiri
    • 1
    • 2
  • Elyes Chabchoub
    • 1
  • Asma Boumiza
    • 1
  • Foued Slama
    • 1
  • Khadija Baccouche
    • 3
  • Zahid Shakoor
    • 2
  • Adel Almogren
    • 2
  • Christina Mariaselvam
    • 4
  • Ryad Tamouza
    • 4
  • Elyes Bouajina
    • 3
  • Ramzi Zemni
    • 1
  1. 1.Laboratory of Immunology, Research Unit UR 807, Faculty of Medicine of SousseUniversity of SousseSousseTunisia
  2. 2.Department of Pathology, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of RheumatologyFarhat Hached HospitalSousseTunisia
  4. 4.Mondor Institute of Biomedical Research, U955, team 15Henri Mondor HospitalCréteilFrance

Personalised recommendations