Advertisement

Clinical Rheumatology

, Volume 37, Issue 8, pp 2251–2259 | Cite as

Improvement in diagnostic and therapeutic arthrocentesis via constant compression

  • Tej B. Bhavsar
  • Wilmer L. SibbittJr
  • Philip A. Band
  • Romy J. Cabacungan
  • Timothy S. Moore
  • Luis C. Salayandia
  • Roderick A. Fields
  • Scarlett K. Kettwich
  • Luis P. Roldan
  • N. Suzanne Emil
  • Monthida Fangtham
  • Arthur D. Bankhurst
Original Article

Abstract

We hypothesized that constant compression of the knee would mobilize residual synovial fluid and promote successful arthrocentesis. Two hundred and ten knees with grade II–III osteoarthritis were included in this paired design study: (1) conventional arthrocentesis was performed with manual compression and success and volume (milliliters) determined; and (2) the intra-articular needle was left in place, and a circumferential elastomeric brace was tightened on the knee to provide constant compression. Arthrocentesis was attempted again and additional fluid volume was determined. Diagnostic procedural cost-effectiveness was determined using 2017 US Medicare costs. No serious adverse events were noted in 210 subjects. In the 158 noneffusive (dry) knees, sufficient synovial fluid for diagnostic purposes (≥ 2 ml) was obtained in 5.0% (8/158) without compression and 22.8% (36/158) with compression (p = 0.0001, z for 95% CI = 1.96), and the absolute volume of arthrocentesis fluid obtained without compression was 0.28 ± 0.79 versus 1.10 ± 1.81 ml with compression (293% increase, p = 0.0001). In the 52 effusive knees, diagnostic synovial fluid (≥ 2 ml) was obtained in 75% (39/52) without compression and 100% (52/52) with compression (p = 0.0001, z for 95% CI = 1.96), and the absolute volume of arthrocentesis without compression was 14.7 ± 13.8 versus 25.3 ± 15.5 ml with compression (72.1% increase, p = 0.0002). Diagnostic procedural cost-effectiveness was $655/sample without compression and $387/sample with compression. The new technique of constant compression via circumferential mechanical compression mobilizes residual synovial fluid beyond manual compression improving the success, cost-effectiveness, and yield of diagnostic and therapeutic arthrocentesis in both the effusive and noneffusive knee.

Keywords

Arthrocentesis Injections Intra-articular Knee Quality 

Notes

Acknowledgements

The authors would like to thank Jackie Cremar for logistic assistance in preparation of this manuscript. We would also like to thank the staff of our local IRB (the Human Research Committee) for guiding us in the preparation of this study, data, and manuscript.

Funding information

There was no internal or external support for this study.

Compliance with ethical standards

Ethical standards

All human and animal studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All persons gave their informed consent prior to any procedures and prior to the inclusion in the study.

Disclosures

None.

References

  1. 1.
    Aceves-Avila FJ, Delgadillo-Ruano MA, Ramos-Remus C, Gomez-Vargas A, Gutierrez-Urena S (2003) The first descriptions of therapeutic arthrocentesis: a historical note. Rheumatology (Oxford) 42:180–183CrossRefGoogle Scholar
  2. 2.
    Guggi V, Calame L (2002) Contribution of digit joint aspiration to the diagnosis of rheumatic diseases. Joint Bone Spine 69:58–61CrossRefPubMedGoogle Scholar
  3. 3.
    Manadan AM, Block JA (2004) Daily needle aspiration versus surgical lavage for the treatment of bacterial septic arthritis in adults. Am J Ther 11:412–415CrossRefPubMedGoogle Scholar
  4. 4.
    Schumacher HR, Chen LX (2005) Injectable corticosteroids in treatment of arthritis of the knee. Am J Med 118:1208–1214CrossRefPubMedGoogle Scholar
  5. 5.
    Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, Towheed T, Welch V, Wells G, Tugwell P, American College of Rheumatology (2012) American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res 64:465–474CrossRefGoogle Scholar
  6. 6.
    Weitoft T, Uddenfeldt P (2000) Importance of synovial fluid aspiration when injecting intra-articular corticosteroids. Ann Rheum Dis 59:233–235CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jones A, Regan M, Ledingham J, Patrick M, Manhire A, Doherty M (1993) Importance of placement of intra-articular steroid injections. BMJ 307:1329–1330CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Waddell DD, Marino AA (2007) Chronic knee effusions in patients with advanced osteoarthritis: implications for functional outcome of viscosupplementation. J Knee Surg 20:181–184CrossRefPubMedGoogle Scholar
  9. 9.
    Tanaka N, Sakahashi H, Sato E, Hirose K, Ishima T, Ishii S (2002) Intra-articular injection of high molecular weight hyaluronan after arthrocentesis as treatment for rheumatoid knees with joint effusion. Rheumatol Int 22:151–154CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang Q, Zhang T (2016) Effect on pain and symptoms of aspiration before hyaluronan injection for knee osteoarthritis: a prospective, randomized, single-blind study. Am J Phys Med Rehabil 95:366–371PubMedGoogle Scholar
  11. 11.
    Sibbitt WL Jr, Kettwich LG, Band PA, Chavez-Chiang NR, DeLea SL, Haseler LJ, Bankhurst AD (2012) Does ultrasound guidance improve the outcomes of arthrocentesis and corticosteroid injection of the knee? Scand J Rheumatol 41:66–72CrossRefPubMedGoogle Scholar
  12. 12.
    Roberts WN, Hayes CW, Breitbach SA, Owen DS Jr (1996) Dry taps and what to do about them: a pictorial essay on failed arthrocentesis of the knee. Am J Med 100:461–464CrossRefPubMedGoogle Scholar
  13. 13.
    Roberts WN (2007) Primer: pitfalls of aspiration and injection. Nat Clin Pract Rheumatol 3:464–472CrossRefPubMedGoogle Scholar
  14. 14.
    Roberts WO (1998) Knee aspiration and injection. Phys Sports Med 26:93–94CrossRefGoogle Scholar
  15. 15.
    Thomsen TW, Shen S, Shaffer RW, Setnik GS (2006) Videos in clinical medicine. Arthrocentesis of the knee. N Engl J Med 354(19):e19CrossRefPubMedGoogle Scholar
  16. 16.
    Beran TN, McLaughlin K, Al Ansari A, Kassam A (2013) Conformity of behaviors among medical students: impact on performance of knee arthrocentesis in simulation. Adv Health Sci Educ Theory Pract 18:589–596CrossRefPubMedGoogle Scholar
  17. 17.
    Neustadt DH (2006) Intra-articular injections for osteoarthritis of the knee. Cleve Clin J Med 73:897–898 901-4, 906-11CrossRefPubMedGoogle Scholar
  18. 18.
    Zuber TJ (2002) Knee joint aspiration and injection. Am Fam Physician 66:1497–1500 1503–4, 1507PubMedGoogle Scholar
  19. 19.
    Johnson MW (2000) Acute knee effusions: a systematic approach to diagnosis. Am Fam Physician 61:2391–2400PubMedGoogle Scholar
  20. 20.
    Chen B, Lai LP, Putcha N, Stitik TP, Foye PM et al (2014) Optimal needle placement for ultrasound-guided knee joint injections or aspirations. J Trauma Treat 3:216.  https://doi.org/10.4172/2167-1222.1000216 Google Scholar
  21. 21.
    Gardner GC (2007) Teaching arthrocentesis and injection techniques: what is the best way to get our point across? J Rheumatol 34:1448–1450PubMedGoogle Scholar
  22. 22.
    Jackson DW, Evans NA, Thomas BM (2002) Accuracy of needle placement into the intra-articular space of the knee. J Bone Joint Surg Am 84-A:1522–1527CrossRefPubMedGoogle Scholar
  23. 23.
    Ike RW, Somers EC, Arnold EL, Arnold WJ (2010) Ultrasound of the knee during voluntary quadriceps contraction: a technique for detecting otherwise occult effusions. Arthritis Care Res (Hoboken) 62:725–729CrossRefGoogle Scholar
  24. 24.
    Chavez-Chiang CE, Sibbitt WL Jr, Band PA, Chavez-Chiang NR, Delea SL, Bankhurst AD (2011) The highly accurate anteriolateral portal for injecting the knee. Sports Med Arthrosc Rehabil Ther Technol 3:6.  https://doi.org/10.1186/1758-2555-3-6 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dabke HV (2004) Accuracy of needle placement into the intra-articular space of the knee. J Bone Joint Surg Am 86-A:433–434CrossRefPubMedGoogle Scholar
  26. 26.
    Sibbitt WL Jr, Band PA, Kettwich LG, Sibbitt CR, Sibbitt LJ, Bankhurst AD (2011) Safety syringes and anti-needlestick devices in orthopaedic surgery. J Bone Joint Surg Am 93:1641–1649CrossRefPubMedGoogle Scholar
  27. 27.
    Myles PS, Troedel S, Boquest M, Reeves M (1999) The pain visual analogue scale. Is it linear or nonlinear? Anesth Analg 89:1517–1520PubMedGoogle Scholar
  28. 28.
    Katz J, Melzack R (1999) Measurement of pain. Surg Clin North Am 79:231–252CrossRefPubMedGoogle Scholar
  29. 29.
    U.S. Department of Health & Human Services. Centers for Medicare & Medicaide Services (2017) Physician fee schedule look-up http://www.cms.hhs.gov/PFSlookup/
  30. 30.
    Sibbitt WL Jr, Band PA, Chavez-Chiang NR, Delea SL, Norton HE, Bankhurst AD (2011) A randomized controlled trial of the cost-effectiveness of ultrasound-guided intraarticular injection of inflammatory arthritis. J Rheumatol 38:252–263CrossRefPubMedGoogle Scholar
  31. 31.
    Sibbitt WL Jr, Band PA, Kettwich LG, Chavez-Chiang NR, Delea SL, Bankhurst AD (2011) A randomized controlled trial evaluating the cost-effectiveness of sonographic guidance for intra-articular injection of the osteoarthritic knee. J Clin Rheumatol 17:409–415CrossRefPubMedGoogle Scholar
  32. 32.
    Taylor WJ, Fransen J, Dalbeth N et al (2016) Diagnostic arthrocentesis for suspicion of gout is safe and well tolerated. J Rheumatol 43:150–153CrossRefPubMedGoogle Scholar
  33. 33.
    Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26:111–117CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg SA, Restifo NP (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202:907–912CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Hervé Fridman W, Cremer I, Tartour E, Zitvogel L, Kroemer G, Galluzzi L (2014) Trial watch: adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 3:e28344 eCollection 2014. ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hyc A, Osiecka-Iwan A, Niderla-Bielinska J, Jankowska-Steifer E, Moskalewski S (2009) Pro- and anti-inflammatory cytokines increase hyaluronan production by rat synovial membrane in vitro. Int J Mol Med 24:579–585PubMedGoogle Scholar
  37. 37.
    Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat Inflamm 2014:561459CrossRefGoogle Scholar
  38. 38.
    Cunnington J, Marshall N, Hide G, Bracewell C, Isaacs J, Platt P et al (2010) A randomised, controlled, double blinded study of ultrasound guided corticosteroid joint injection in patients with inflammatory arthritis. Arthritis Rheum 62:1862–1869PubMedGoogle Scholar
  39. 39.
    Wiler JL, Costantino TG, Filippone L, Satz W (2010) Comparison of ultrasound-guided and standard landmark techniques for knee arthrocentesis. J Emerg Med 39:76–82CrossRefPubMedGoogle Scholar
  40. 40.
    Hirsch G, O’Neill T, Kitas G, Klocke R (2012) Distribution of effusion in knee arthritis as measured by high-resolution ultrasound. Clin Rheumatol 31:1243–1246CrossRefPubMedGoogle Scholar
  41. 41.
    Meehan R (2008) Joint aspirate facilitating device. US Patent 7,468,048, issued December 23, 2008, US Patent and Trademark Office, USAGoogle Scholar
  42. 42.
    Band PA, Heeter J, Wisniewski HG, Liublinska V, Pattanayak CW, Karia RJ, Stabler T, Balazs EA, Kraus VB (2015) Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. Osteoarthr Cartil 23:70–76CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang Z, Christopher GF (2015) The nonlinear viscoelasticity of hyaluronic acid and its role in joint lubrication. Soft Matter 11:2596–2603CrossRefPubMedGoogle Scholar
  44. 44.
    Tamer TM (2013) Hyaluronan and synovial joint: function, distribution and healing. Interdiscip Toxicol 6:111–125CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chaudhry H, Bukiet B, Roman M, Stecco A, Findley T (2013) Squeeze film lubrication for non-Newtonian fluids with application to manual medicine. Biorheology 50:191–202PubMedGoogle Scholar
  46. 46.
    Band PA (2015) Using Medicare data to understand health care value: measures of incremental cost and effectiveness are both needed to estimate value. JAMA Intern Med 175:462CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2017

Authors and Affiliations

  • Tej B. Bhavsar
    • 1
  • Wilmer L. SibbittJr
    • 2
  • Philip A. Band
    • 3
  • Romy J. Cabacungan
    • 4
  • Timothy S. Moore
    • 5
  • Luis C. Salayandia
    • 6
  • Roderick A. Fields
    • 2
  • Scarlett K. Kettwich
    • 7
  • Luis P. Roldan
    • 8
  • N. Suzanne Emil
    • 2
  • Monthida Fangtham
    • 2
  • Arthur D. Bankhurst
    • 2
  1. 1.The Center for Rheumatology LLCSaratoga SpringsUSA
  2. 2.Department of Internal Medicine, Division of Rheumatology and School of MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA
  3. 3.Department of Orthopaedic Surgery, Biochemistry & Molecular PharmacologyNYU School of MedicineNew York CityUSA
  4. 4.Arizona Arthritis and Rheumatology AssociatesTucsonUSA
  5. 5.Department of Internal Medicine, Division of Rheumatology and School of Medicine, Penncare Rheumatology AssociatesUniversity of Pennsylvania Health SystemPhiladelphiaUSA
  6. 6.El Paso Integrated Physician’s Group, P.A.El PasoUSA
  7. 7.School of DentistryOregon Health & Science UniversityPortlandUSA
  8. 8.School of MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA

Personalised recommendations