Advertisement

Clinical Rheumatology

, Volume 36, Issue 9, pp 1935–1947 | Cite as

Genomics and epigenomics in rheumatic diseases: what do they provide in terms of diagnosis and disease management?

  • Patricia Castro-Santos
  • Roberto Díaz-Peña
Review Article

Abstract

Most rheumatic diseases are complex or multifactorial entities with pathogeneses that interact with both multiple genetic factors and a high number of diverse environmental factors. Knowledge of the human genome sequence and its diversity among populations has provided a crucial step forward in our understanding of genetic diseases, identifying many genetic loci or genes associated with diverse phenotypes. In general, susceptibility to autoimmunity is associated with multiple risk factors, but the mechanism of the environmental component influence is poorly understood. Studies in twins have demonstrated that genetics do not explain the totality of the pathogenesis of rheumatic diseases. One method of modulating gene expression through environmental effects is via epigenetic modifications. These techniques open a new field for identifying useful new biomarkers and therapeutic targets. In this context, the development of “-omics” techniques is an opportunity to progress in our knowledge of complex diseases, impacting the discovery of new potential biomarkers suitable for their introduction into clinical practice. In this review, we focus on the recent advances in the fields of genomics and epigenomics in rheumatic diseases and their potential to be useful for the diagnosis, follow-up, and treatment of these diseases. The ultimate aim of genomic studies in any human disease is to understand its pathogenesis, thereby enabling the prediction of the evolution of the disease to establish new treatments and address the development of personalized therapies.

Keywords

Biomarker Diagnosis Epigenetics Epigenomics Genomics Rheumatic diseases 

Notes

Compliance with ethical standards

Disclosures

None.

References

  1. 1.
    Gutierrez-Arcelus M, Rich SS, Raychaudhuri S (2016) Autoimmune diseases—connecting risk alleles with molecular traits of the immune system. Nat Rev Genet 3:160–174CrossRefGoogle Scholar
  2. 2.
    Alarcon-Riquelme ME (2007) Recent advances in the genetics of autoimmune diseases. Ann N Y Acad Sci 1110:1–9PubMedCrossRefGoogle Scholar
  3. 3.
    Jiang YH, Bressler J, Beaudet AL (2004) Epigenetics and human disease. Annu Rev Genomics Hum Genet 5:479–510PubMedCrossRefGoogle Scholar
  4. 4.
    MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K et al (2000) Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 43:30–37PubMedCrossRefGoogle Scholar
  5. 5.
    Plant D, Wilson AG, Barton A (2014) Genetic and epigenetic predictors of responsiveness to treatment in RA. Nat Rev Rheumatol 10:329–337PubMedCrossRefGoogle Scholar
  6. 6.
    Gibson DS, Rooney ME, Finnegan S, Qiu J, Thompson DC, Labaer J et al (2012) Biomarkers in rheumatology, now and in the future. Rheumatology (Oxford) 51:423–433CrossRefGoogle Scholar
  7. 7.
    Ombrello MJ, Sikora KA, Kastner DL (2014) Genetics, genomics, and their relevance to pathology and therapy. Best Pract Res Clin Rheumatol 28:175–189PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV et al (2014) Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 370:911–920PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Aksentijevich I, Kastner DL (2011) Genetics of monogenic autoinflammatory diseases: past successes, future challenges. Nat Rev Rheumatol 7:469–478PubMedCrossRefGoogle Scholar
  10. 10.
    Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK et al (2004) Gene map of the extended human MHC. Nat Rev Genet 5:889–899PubMedCrossRefGoogle Scholar
  11. 11.
    Trowsdale J (2005) HLA genomics in the third millennium. Curr Opin Immunol 17:498–504PubMedCrossRefGoogle Scholar
  12. 12.
    Parkes M, Cortes A, van Heel DA, Brown MA (2013) Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 2013(14):661–673CrossRefGoogle Scholar
  13. 13.
    Wagner U, Kaltenhäuser S, Sauer H, Arnold S, Seidel W, Häntzschel H et al (1997) HLA markers and prediction of clinical course and outcome in rheumatoid arthritis. Arthritis Rheum 40:341–351PubMedCrossRefGoogle Scholar
  14. 14.
    Cui Y, Sheng Y, Zhang X (2013) Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun 41:25–33PubMedCrossRefGoogle Scholar
  15. 15.
    Nakajima M, Takahashi A, Kou I, Rodriguez-Fontenla C, Gomez-Reino JJ, Furuichi T et al (2010) New sequence variants in HLA class II/III region associated with susceptibility to knee osteoarthritis identified by genome-wide association study. PLoS One 5:e9723PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bowes J, Budu-Aggrey A, Huffmeier U, Uebe S, Steel K, Hebert HL et al (2015) Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat Commun 6:6046PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DC, Sturrock RD (1973) Ankylosing spondylitis and HL-A 27. Lancet 1:904–907PubMedCrossRefGoogle Scholar
  18. 18.
    Díaz-Peña R, López-Vázquez A, López-Larrea C (2012) Old and new HLA associations with ankylosing spondylitis. Tissue Antigens 80:205–213PubMedCrossRefGoogle Scholar
  19. 19.
    Daha NA, Toes RE (2011) Rheumatoid arthritis: are ACPA-positive and ACPA-negative RA the same disease? Nat Rev Rheumatol 7:202–203PubMedCrossRefGoogle Scholar
  20. 20.
    Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213PubMedCrossRefGoogle Scholar
  21. 21.
    Yamamoto K, Okada Y, Suzuki A, Kochi Y (2015) Genetics of rheumatoid arthritis in Asia—present and future. Nat Rev Rheumatol 11:375–379PubMedCrossRefGoogle Scholar
  22. 22.
    Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381PubMedCrossRefGoogle Scholar
  23. 23.
    Alarcón-Segovia D, Alarcón-Riquelme ME, Cardiel MH, Caeiro F, Massardo L, Villa AR et al (2005) Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1177 lupus patients from the GLADEL cohort. Arthritis Rheum 52:1138–1147PubMedCrossRefGoogle Scholar
  24. 24.
    Deng Y, Tsao BP (2014) Advances in lupus genetics and epigenetics. Curr Opin Rheumatol 26:482–492PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL et al (1997) Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum 40:1823–1828PubMedCrossRefGoogle Scholar
  26. 26.
    International Genetics of Ankylosing Spondylitis Consortium (IGAS), Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T et al (2013) Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 45:730–738CrossRefGoogle Scholar
  27. 27.
    Spector TD, MacGregor AJ (2004) Risk factors for osteoarthritis: genetics. Osteoarthr Cartil 12:39–44CrossRefGoogle Scholar
  28. 28.
    Tsezou A (2014) Osteoarthritis year in review 2014: genetics and genomics. Osteoarthr Cartil 22:2017–2024PubMedCrossRefGoogle Scholar
  29. 29.
    Isailovic N, Daigo K, Mantovani A, Selmi C (2015) Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun 60:1–11PubMedCrossRefGoogle Scholar
  30. 30.
    Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, van der Heijde D et al (2013) Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet 382:1705–1713PubMedCrossRefGoogle Scholar
  31. 31.
    McInnes IB, Kavanaugh A, Gottlieb AB, Puig L, Rahman P, Ritchlin C et al (2013) Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382:780–789PubMedCrossRefGoogle Scholar
  32. 32.
    Yarwood A, Eyre S, Worthington J (2016) Genetic susceptibility to rheumatoid arthritis and its implications for novel drug discovery. Expert Opin Drug Discov 8:805–813CrossRefGoogle Scholar
  33. 33.
    Ranganathan P (2015) Rheumatoid arthritis: biomarkers of response to TNF inhibition in RA. Nat Rev Rheumatol 11:446–448PubMedCrossRefGoogle Scholar
  34. 34.
    Oliver J, Plant D, Webster AP, Barton A (2015) Genetic and genomic markers of anti-TNF treatment response in rheumatoid arthritis. Biomark Med 9:499–512PubMedCrossRefGoogle Scholar
  35. 35.
    Bottini N, Peterson EJ (2014) Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol 32:83–119PubMedCrossRefGoogle Scholar
  36. 36.
    Wu H, Zhao M, Chang C, Lu Q (2015) The real culprit in systemic lupus erythematosus: abnormal epigenetic regulation. Int J Mol Sci 16:11013–11033PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Karlic H, Thaler R, Gerner C, Grunt T, Proestling K, Haider F et al (2015) Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells. Cancer Genet 208:241–252PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Glant TT, Mikecz K, Rauch TA (2014) Epigenetics in the pathogenesis of rheumatoid arthritis. BMC Med 12:35–39PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Xu GL, Walsh CP (2014) Enzymatic DNA oxidation: mechanisms and biological significance. BMB Rep 47:609–618PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Schiesser S, Hackner B, Pfaffeneder T, Müller M, Hagemeier C, Truss M et al (2012) Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew Chem Int Ed Engl 51:6516–6520PubMedCrossRefGoogle Scholar
  41. 41.
    Perl A (2013) Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat Rev Rheumatol 9:674–686PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedCrossRefGoogle Scholar
  43. 43.
    Strietholt S, Maurer B, Peters MA, Pap T, Gay S (2008) Epigenetic modifications in rheumatoid arthritis. Arthritis Res Ther 10:219–228PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Vojinovic J, Damjanov N, D'Urzo C, Furlan A, Susic G, Pasic S et al (2011) Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 5:1452–1458CrossRefGoogle Scholar
  45. 45.
    Hou X, Rooklin D, Fang H, Zhang Y (2016) Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci Rep 6:38186PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gao Y, Tollefsbol TO (2015) Impact of epigenetic dietary components on cancer through histone modifications. Curr Med Chem 22:2051–2064PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Yang Y, Peng L, Ma W, Yi F, Zhang Z, Chen H et al (2016) Autoantigen-targeting microRNAs in Sjögren's syndrome. Clin Rheumatol 35:911–917PubMedCrossRefGoogle Scholar
  48. 48.
    Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60:3613–3622PubMedCrossRefGoogle Scholar
  49. 49.
    Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS (2013) DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis 72:110–117PubMedCrossRefGoogle Scholar
  50. 50.
    Nile CJ, Read RC, Akil M, Duff GW, Wilson AG (2008) Methylation status of a single CpG site in the IL-6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58:2686–2693PubMedCrossRefGoogle Scholar
  51. 51.
    Takami N, Osawa K, Miura Y, Komai K, Taniguchi M, Shiraishi M et al (2006) Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum 54:779–787PubMedCrossRefGoogle Scholar
  52. 52.
    Karouzakis E, Rengel Y, Jüngel A, Kolling C, Gay RE, Michel BA et al (2011) DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immun 12:643–652PubMedCrossRefGoogle Scholar
  53. 53.
    Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A et al (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nature Biotech 31:142–147CrossRefGoogle Scholar
  54. 54.
    Glossop JR, Emes RD, Nixon NB, Haworth KE, Packham JC, Dawes PT et al (2014) Genome-wide DNA methylation profiling in rheumatoid arthritis identifies disease-associated methylation changes that are distinct to individual T- and B-lymphocyte populations. Epigenetics 9:1228–1237PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    de la Rica L, Urquiza JM, Gómez-Cabrero D, Islam AB, López-Bigas N, Tegnér J et al (2013) Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J Autoimmun 41:6–16PubMedCrossRefGoogle Scholar
  56. 56.
    Van Loosdregt J, Brunen D, Fleskens V, Pals CE, Lam EW, Coffer PJ (2011) Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS One 6:e19047PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kawabata T, Nishida K, Takasugi K, Ogawa H, Sada K, Kadota Y et al (2010) Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-alpha in synovial tissue of rheumatoid arthritis. Arthritis Res Ther 12:R133PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Grabiec AM, Korchynsky O, Tak PP, Reedquist KA (2012) Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocytes and macrophage IL-6 production by accelerating mRNA decay. Ann Rheum Dis 71:424–431PubMedCrossRefGoogle Scholar
  59. 59.
    Herhaus L, Dikic I (2015) Expanding the ubiquitin code through post-translational modification. EMBO Rep 16:1071–1083PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Romero V, Fert-Bober J, Nigrovic PA, Darrah E, Haque UJ, Lee DM et al (2013) Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci Transl Med 5:209ra150PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Salehi E, Eftekhari R, Oraei M, Gharib A, Bidad K (2015) MicroRNAs in rheumatoid arthritis. Clin Rheumatol 34:615–628PubMedCrossRefGoogle Scholar
  62. 62.
    Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10:R101PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Fulci V, Scappucci G, Sebastiani GD, Giannitti C, Franceschini D, Meloni F et al (2010) miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol 7:206–211CrossRefGoogle Scholar
  64. 64.
    Murata K, Yoshitomi H, Tanida S, Ishikawa M, Nishitani K, Ito H et al (2010) Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 12:R86PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ruedel A, Dietrich P, Schubert T, Hofmeister S, Hellerbrand C, Bosserhoff AK (2015) Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts. Int J Clin Exp Pathol 8:6607–6616PubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhao M, Liu S, Luo S, Wu H, Tang M, Cheng W et al (2014) DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J Autoimmun 54:127–136PubMedCrossRefGoogle Scholar
  67. 67.
    Xu J, Zhang G, Cheng Y, Chen B, Dong Y, Li L et al (2011) Hypomethylation of the HTR1A promoter region and high expression of HTR1A in the peripheral blood lymphocytes of patients with systemic lupus erythematosus. Lupus 20:678–689PubMedCrossRefGoogle Scholar
  68. 68.
    Renaudineau Y, Beauvillard D, Padelli M, Brooks WH, Youinou P (2011) Epigenetic alterations and autoimmune disease. J Dev Orig Health Dis 2:258–264PubMedCrossRefGoogle Scholar
  69. 69.
    Lu Q, Kaplan M, Ray D, Zacharek S, Gutsch D, Richardson B (2002) Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 46:1282–1291PubMedCrossRefGoogle Scholar
  70. 70.
    Zhao M, Sun Y, Gao F, Wu X, Tang J, Yin H et al (2010) Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J Autoimmun 35:58–69PubMedCrossRefGoogle Scholar
  71. 71.
    Li Y, Huang C, Zhao M, Liang G, Xiao R, Yung S et al (2013) A possible role of HMGB1 in DNA demethylation in CD4+ T cells from patients with systemic lupus erythematosus. Clin Dev Immunol 2013:206298PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kow NY, Mak A (2013) Costimulatory pathways: physiology and potential therapeutic manipulation in systemic lupus erythematosus. Clin Dev Immunol 2013:245928PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhao M, Tang J, Gao F, Wu X, Liang Y, Yin H et al (2010) Hypomethylation of IL10 and IL13 promoters in CD4+ T cells of patients with systemic lupus erythematosus. J Biomed Biotechnol 2010:931018PubMedPubMedCentralGoogle Scholar
  74. 74.
    Coit P, Jeffries M, Altorok N, Dozmorov MG, Koelsch KA, Wren JD et al (2013) Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+ T cells from lupus patients. J Autoimmun 43:78–84PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hu N, Qiu X, Luo Y, Yuan J, Li Y, Lei W et al (2008) Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 35:804–810PubMedGoogle Scholar
  76. 76.
    Liu Y, Liao J, Zhao M, Wu H, Yung S, Chan TM et al (2015) Increased expression of TLR2 in CD4+ T cells from SLE patients enhances immune reactivity and promotes IL-17 expression through histone modifications. Eur J Immunol 45:2683–2693PubMedCrossRefGoogle Scholar
  77. 77.
    Apostolidis SA, Rauen T, Hedrich CM, Tsokos GC, Crispín JC (2013) Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling. J Biol Chem 288:26775–26784PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sullivan KE, Suriano A, Dietzmann K, Lin J, Goldman D, Petri MA (2007) The TNFalpha locus is altered in monocytes from patients with systemic lupus erythematosus. Clin Immunol 123:74–81PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhang Z, Song L, Maurer K, Petri MA, Sullivan KE (2010) Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun 11:124–133PubMedCrossRefGoogle Scholar
  80. 80.
    Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S et al (2011) MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63:1376–1386PubMedCrossRefGoogle Scholar
  81. 81.
    Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X et al (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184:6773–6781PubMedCrossRefGoogle Scholar
  82. 82.
    Rasmussen TK, Andersen T, Bak RO, Yiu G, Sørensen CM, Stengaard-Pedersen K et al (2015) Overexpression of microRNA-155 increases IL-21 mediated STAT3 signaling and IL-21 production in systemic lupus erythematosus. Arthritis Res Ther 17:154PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Duroux-Richard I, Cuenca J, Ponsolles C, Piñeiro AB, Gonzalez F, Roubert C et al (2015) MicroRNA profiling of B cell subsets from systemic lupus erythematosus patients reveals promising novel biomarkers. Int J Mol Sci 16:16953–16965PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Liu J, Zhu L, Xie GL, Bao JF, Yu Q (2015) Let-7 miRNAs modulate the activation of NF-κB by targeting TNFAIP3 and are involved in the pathogenesis of lupus nephritis. PLoS One 10:e0121256PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lai NS, Chou JL, Chen GC, Liu SQ, Lu MC, Chan MW (2014) Association between cytokines and methylation of SOCS-1 in serum of patients with ankylosing spondylitis. Mol Biol Rep 41:3773–3780PubMedCrossRefGoogle Scholar
  86. 86.
    Toussirot E, Abbas W, Khan KA, Tissot M, Jeudy A, Baud L et al (2013) Imbalance between HAT and HDAC activities in the PBMCs of patients with ankylosing spondylitis or rheumatoid arthritis and influence of HDAC inhibitors on TNF alpha production. PLoS One 8:e70939PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lai NS, Yu HC, Chen HC, Yu CL, Huang HB, Lu MC (2013) Aberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesis. Clin Exp Immunol 173:47–57PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Delgado-Calle J, Fernández AF, Sainz J, Zarrabeitia MT, Sañudo C, García-Renedo R et al (2013) Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum 65:197–205PubMedCrossRefGoogle Scholar
  89. 89.
    Fernández-Tajes J, Soto-Hermida A, Vázquez-Mosquera ME, Cortés-Pereira E, Mosquera A, Fernández-Moreno M et al (2014) Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis 73:668–677PubMedCrossRefGoogle Scholar
  90. 90.
    Rushton MD, Reynard LN, Barter MJ, Refaie R, Rankin KS, Younf DA et al (2014) Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol 66:2450–2460PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hashimoto K, Otero M, Imagawa K, de Andres MC, Coico JM, Roach HI et al (2013) Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem 288:10061–10072PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    De Andres MC, Imagawa K, Hashimoto K, Gonzalez A, Roach HI, Goldring MB et al (2013) Loss of methylation in CpG sites in the NF-κB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. Arthritis Rheum 65:732–742PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kim KI, Park YS, Im GI (2013) Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J Bone Miner Res 28:1050–1060PubMedCrossRefGoogle Scholar
  94. 94.
    Higashiyama R, Miyaki S, Yamashita S, Yoshitaka T, Lindman G, Ito Y et al (2010) Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol 20:11–17PubMedCrossRefGoogle Scholar
  95. 95.
    Fujita N, Matsushita T, Ishida K, Kubo S, Matsumoto T, Takayama K et al (2011) Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res 29:511–515PubMedCrossRefGoogle Scholar
  96. 96.
    Matsushita T, Sasaki H, Takayama K, Ishida K, Matsumoto T, Kubo S et al (2013) The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1β in human chondrocytes. J Orthop Res 31:531–537PubMedCrossRefGoogle Scholar
  97. 97.
    Moon MH, Jeong JK, Lee YJ, Seol JW, Jackson CJ, Park SY (2013) SIRT1, a class III histone deacetylase, regulates TNF-α-induced inflammation in human chondrocytes. Osteoarthr Cartil 21:470–480PubMedCrossRefGoogle Scholar
  98. 98.
    Díaz-Prado S, Cicione C, Muiños-López E, Hermida-Gómez T, Oreiro N, Fernández-López C et al (2012) Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord 13:144PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Swingler TE, Wheeler G, Carmont V, Elliott HR, Barter MJ, Abu-Elmagd M et al (2012) The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum 64:1909–1919PubMedCrossRefGoogle Scholar
  100. 100.
    Kim YI, Logan JW, Mason JB, Roubenoff R (1996) DNA hypomethylation in inflammatory arthritis: reversal with methotrexate. J Lab Clin Med 128:165–172PubMedCrossRefGoogle Scholar
  101. 101.
    Ellis JA, Munro JE, Chavez RA, Gordon L, Joo JE, Akikusa JD et al (2012) Genome-scale case-control analysis of CD4+ T-cell DNA methylation in juvenile idiopathic arthritis reveals potential targets involved in disease. Clin Epigenetics 4:20PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Gowers IR, Walters K, Kiss-Toth E, Read RC, Duff GW, Wilson AG (2011) Age-related loss of CpG methylation in the tumour necrosis factor promoter. Cytokine 56:792–797PubMedCrossRefGoogle Scholar
  103. 103.
    Tang Q, Yang Y, Zhao M, Liang G, Wu H, Liu Q et al (2015) Mycophenolic acid upregulates miR-142-3P/5P and miR-146a in lupus CD4+T cells. Lupus 24:935–942PubMedCrossRefGoogle Scholar
  104. 104.
    Castro-Santos P, Laborde CM, Díaz-Peña R (2015) Genomics, proteomics and metabolomics: their emerging roles in the discovery and validation of rheumatoid arthritis biomarkers. Clin Exp Rheumatol 33:279–286PubMedGoogle Scholar
  105. 105.
    Hernandez R, Orbay H, Cai W (2013) Molecular imaging strategies for in vivo tracking of microRNAs: a comprehensive review. Curr Med Chem 20:3594–3603PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2017

Authors and Affiliations

  1. 1.Facultad de Ciencias de la SaludUniversidad Autónoma de ChileTalcaChile
  2. 2.Projects Unit, Sistemas GenómicosValenciaSpain

Personalised recommendations