Clinical Rheumatology

, Volume 37, Issue 8, pp 2169–2178 | Cite as

Glucocorticoid therapy causes contradictory changes of serum Wnt signaling-related molecules in systemic autoimmune diseases

  • Mai Kawazoe
  • Kaichi Kaneko
  • Kotaro Shikano
  • Natsuko Kusunoki
  • Toshihiro Nanki
  • Shinichi KawaiEmail author
Original Article


The objective of this study was to investigate the clinical significance of the Wnt/β-catenin signaling pathway in glucocorticoid-induced osteoporosis. A total of 91 patients with systemic autoimmune diseases who received initial glucocorticoid therapy with prednisolone (30–60 mg daily) were prospectively enrolled. We measured serum levels of N-terminal peptide of type I procollagen (P1NP), bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase isoform 5b (TRACP-5b), N-telopeptide cross-linked type I collagen (NTX), sclerostin, Dickkopf-1 (Dkk-1), and Wnt3a before starting glucocorticoid therapy and every week for 4 weeks after its initiation. The effects of dexamethasone on expression of mRNA and protein of sclerostin and Dkk-1 by cultured normal human osteoblasts (NHOst) were evaluated by RT-PCR and ELISA, respectively. Serum levels of sclerostin and Dkk-1 increased significantly by 1 week of glucocorticoid therapy and then decreased from the second week onward. Serum Wnt3a tended to decrease and serum P1NP showed a significant decrease. However, TRACP-5b was significantly elevated from the first week of treatment onwards. In vitro study, dexamethasone increased Dkk-1 mRNA expression in cultured NHOst, but sclerostin mRNA was not detected. Dexamethasone also increased Dkk-1 protein production by osteoblasts, whereas sclerostin protein was not detected. Bone formation might be impaired at least in the first week of the initiation of glucocorticoid therapy by increase of the serum Wnt signaling inhibitors; however, their reductions in the subsequent weeks were contradictory to the maintained suppression of the bone formation markers after glucocorticoid therapy for patients with systemic autoimmune diseases.


Dickkopf-1 Glucocorticoid Osteoporosis Sclerostin Wnt signaling 


Acknowledgements and funding information

We thank Sonoko Sakurai for secretarial assistance. This study was partly supported by a grant from the Strategic Research Foundation Project for Private Schools in Heisei 23 (S1101016) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (2011–2015) to Toho University and a grant from the Japan Agency for Medical Research and Development on Regulatory Science of Pharmaceuticals and Medical Devices (2015–2016) to SK.

Compliance with ethical standards

This study was approved by the ethics committees of Toho University Omori Medical Center (approval number: 24-78, 25-215) and complied with the 1964 Declaration of Helsinki and its later amendments, and ethical guidelines for Medical and Health Research Involving Human Subjects by Ministries of Education, Culture, Sports, Science and Technology and Health, Labour and Welfare of the Japanese Government. All of the subjects gave written informed consent before enrollment.




  1. 1.
    Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C (2000) Use of oral corticosteroids and risk of fractures. J Bone Miner Res 15:993–1000. doi: 10.1359/jbmr.2000.15.6.993 CrossRefPubMedGoogle Scholar
  2. 2.
    Weinstein RS (2011) Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med 365:62–70. doi: 10.1056/NEJMcp1012926 CrossRefPubMedGoogle Scholar
  3. 3.
    Nawata H, Soen S, Takayanagi R, Tanaka I, Takaoka K, Fukunaga M, Matsumoto T, Suzuki Y, Tanaka H, Fujiwara S, Miki T, Sagawa A, Nishizawa Y, Seino Y (2005) Guidelines on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research (2004). J Bone Miner Metab 23:105–109. doi: 10.1007/s00774-004-0596-x CrossRefPubMedGoogle Scholar
  4. 4.
    Van Staa TP, Leufkens HG, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 13:777–787. doi: 10.1007/s001980200108 CrossRefPubMedGoogle Scholar
  5. 5.
    Canalis E, Mazziotti G, Giustina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328. doi: 10.1007/s00198-007-0394-0 CrossRefPubMedGoogle Scholar
  6. 6.
    Seibel MJ, Cooper MS, Zhou H (2013) Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes Endocrinol 1:59–70. doi: 10.1016/S2213-8587(13)70045-7 CrossRefPubMedGoogle Scholar
  7. 7.
    Guañabens N, Gifre L, Peris P (2014) The role of Wnt signaling and sclerostin in the pathogenesis of glucocorticoid-induced osteoporosis. Curr Osteoporos Rep 12:90–97. doi: 10.1007/s11914-014-0197-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Canalis E (2013) Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9:575–583. doi: 10.1038/nrendo.2013.154 CrossRefPubMedGoogle Scholar
  9. 9.
    Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192. doi: 10.1038/nm.3074 CrossRefPubMedGoogle Scholar
  10. 10.
    Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ (2012) Update on Wnt signaling in bone cell biology and bone disease. Gene 492:1–18. doi: 10.1016/j.gene.2011.10.044 CrossRefPubMedGoogle Scholar
  11. 11.
    Rossini M, Gatti D, Adami S (2013) Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int 93:121–132. doi: 10.1007/s00223-013-9749-z CrossRefPubMedGoogle Scholar
  12. 12.
    Ke HZ, Richards WG, Li X, Ominsky MS (2012) Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 33:747–783. doi: 10.1210/er.2011-1060 CrossRefPubMedGoogle Scholar
  13. 13.
    Moester MJ, Papapoulos SE, Löwik CW, van Bezooijen RL (2010) Sclerostin: current knowledge and future perspectives. Calcif Tissue Int 87:99–107. doi: 10.1007/s00223-010-9372-1 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Suzuki Y, Nawata H, Soen S, Fujiwara S, Nakayama H, Tanaka I, Ozono K, Sagawa A, Takayanagi R, Tanaka H, Miki T, Masunari N, Tanaka Y (2014) Guidelines on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research: 2014 update. J Bone Miner Metab 32:337–350. doi: 10.1007/s00774-014-0586-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Bertouch JV, Roberts-Thompson PJ, Feng PH, Bradley J (1983) C-reactive protein and serological indices of disease activity in systemic lupus erythematosus. Ann Rheum Dis 42:655–658CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gabay C, Gay-Croisier F, Roux-Lombard P, Meyer O, Maineti C, Guerne PA, Vischer T, Dayer JM (1994) Elevated serum levels of interleukin-1 receptor antagonist in polymyositis/dermatomyositis. A biologic marker of disease activity with a possible role in the lack of acute-phase protein response. Arthritis Rheum 37:1744–1751CrossRefPubMedGoogle Scholar
  17. 17.
    Kermani TA, Schmidt J, Crowson CS, Ytterberg SR, Hunder GG, Matteson EL, Warrington KJ (2012) Utility of erythrocyte sedimentation rate and C-reactive protein for the diagnosis of giant cell arteritis. Semin Arthritis Rheum 41:866–871. doi: 10.1016/j.semarthrit.2011.10.005 CrossRefPubMedGoogle Scholar
  18. 18.
    Tse WY, Cockwell P, Savage CO (1998) Assessment of disease activity in systemic vasculitis. Postgrad Med J 74:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bagnari V, Colina M, Ciancio G, Govoni M, Trotta F (2010) Adult-onset Still’s disease. Rheumatol Int 30:855–862. doi: 10.1007/s00296-009-1291-y CrossRefPubMedGoogle Scholar
  20. 20.
    Brabnikova Maresova K, Pavelka K, Stepan JJ (2013) Acute effects of glucocorticoids on serum markers of osteoclasts, osteoblasts, and osteocytes. Calcif Tissue Int 92:354–361. doi: 10.1007/s00223-012-9684-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Gifre L, Ruiz-Gaspà S, Monegal A, Nomdedeu B, Filella X, Guañabens N, Peris P (2013) Effect of glucocorticoid treatment on Wnt signalling antagonists (sclerostin and Dkk-1) and their relationship with bone turnover. Bone 57:272–276. doi: 10.1016/j.bone.2013.08.016 CrossRefPubMedGoogle Scholar
  22. 22.
    Ohnaka K, Taniguchi H, Kawate H, Nawata H, Takayanagi R (2004) Glucocorticoid enhances the expression of dickkopf-1 in human osteoblasts: novel mechanism of glucocorticoid-induced osteoporosis. Biochem Biophys Res Commun 318:259–264. doi: 10.1016/j.bbrc.2004.04.025 CrossRefPubMedGoogle Scholar
  23. 23.
    Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Löwik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842–1844. doi: 10.1096/fj.05-4221fje CrossRefPubMedGoogle Scholar
  24. 24.
    Compton JT, Lee FY (2014) A review of osteocyte function and the emerging importance of sclerostin. J Bone Joint Surg Am 96:1659–1668. doi: 10.2106/JBJS.M.01096 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kuroki Y, Kaji H, Kawano S, Kanda F, Takai Y, Kajikawa M, Sugimoto T (2008) Short-term effects of glucocorticoid therapy on biochemical markers of bone metabolism in Japanese patients: a prospective study. J Bone Miner Metab 26:271–278. doi: 10.1007/s00774-007-0821-5 CrossRefPubMedGoogle Scholar
  26. 26.
    Shikano K, Kaneko K, Kawazoe M, Kaburaki M, Hasunuma T, Kawai S (2016) Efficacy of vitamin K2 for glucocorticoid-induced osteoporosis in patients with systemic autoimmune diseases. Intern Med 55:1997–2003. doi: 10.2169/internalmedicine.55.6230 CrossRefPubMedGoogle Scholar
  27. 27.
    Walton RJ, Preston CJ, Russell RG, Kanis JA (1975) An estimate of the turnover rate of bone-derived plasma alkaline phosphatase in Paget’s disease. Clin Chim Acta 63:227–229CrossRefPubMedGoogle Scholar
  28. 28.
    Weiss MJ, Ray K, Henthorn PS, Lamb B, Kadesch T, Harris H (1988) Structure of the human liver/bone/kidney alkaline phosphatase gene. J Biol Chem 263(24):12002–12010PubMedGoogle Scholar
  29. 29.
    Delany AM, Durant D, Canalis E (2001) Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol Endocrinol 15:1781–1789. doi: 10.1210/mend.15.10.0704 CrossRefPubMedGoogle Scholar
  30. 30.
    Sutherland MK, Geoghegan JC, Yu C, Turcott E, Skonier JE, Winkler DG, Latham JA (2004) Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone 35:828–835. doi: 10.1016/j.bone.2004.05.023 CrossRefPubMedGoogle Scholar
  31. 31.
    Wang FS, Ko JY, Yeh DW, Ke HC, Wu HL (2008) Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology 149:1793–1801. doi: 10.1210/en.2007-0910 CrossRefPubMedGoogle Scholar
  32. 32.
    Dovjak P, Dorfer S, Föger-Samwald U, Kudlacek S, Marculescu R, Pietschmann P (2014) Serum levels of sclerostin and dickkopf-1: effects of age, gender and fracture status. Gerontology 60:493–501. doi: 10.1159/000358303 CrossRefPubMedGoogle Scholar
  33. 33.
    Wang SY, Liu YY, Ye H, Guo JP, Li R, Liu X, Li ZG (2011) Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol 38:821–827. doi: 10.3899/jrheum.100089 CrossRefPubMedGoogle Scholar
  34. 34.
    Boland GM, Perkins G, Hall DJ, Tuan RS (2004) Wnt3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 93:1210–1230CrossRefPubMedGoogle Scholar
  35. 35.
    Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD, MacDougald OA (2007) Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 22:1924–1932CrossRefPubMedGoogle Scholar
  36. 36.
    Stevens JR, Miranda-Carboni GA, Singer MA, Brugger SM, Lyons KM, Lane TF (2010) Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res 25:2138–2147. doi: 10.1002/jbmr.118 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD (2002) Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 87:1586–1592CrossRefPubMedGoogle Scholar
  38. 38.
    Matsumoto T, Hagino H, Shiraki M, Fukunaga M, Nakano T, Takaoka K, Morii H, Ohashi Y, Nakamura T (2009) Effect of daily oral minodronate on vertebral fractures in Japanese postmenopausal women with established osteoporosis: a randomized placebo-controlled double-blind study. Osteoporos Int 20:1429–1437. doi: 10.1007/s00198-008-0816-7 CrossRefPubMedGoogle Scholar
  39. 39.
    Hoes JN, Jacobs JW, Hulsmans HM, De Nijs RN, Lems WF, Bruyn GA, Geusens PP, Bijlsma JW (2010) High incidence rate of vertebral fractures during chronic prednisone treatment, in spite of bisphosphonate or alfacalcidol use extension of the alendronate or alfacalcidol in glucocorticoid-induced osteoporosis-trial. Clin Exp Rheumatol 28:354–359PubMedGoogle Scholar
  40. 40.
    Chung YE, Lee SH, Lee SY, Kim SY, Kim HH, Mirza FS, Lee SK, Lorenzo JA, Kim GS, Koh JM (2012) Long-term treatment with raloxifene, but not bisphosphonates, reduces circulating sclerostin levels in postmenopausal women. Osteoporos Int 23:1235–1243. doi: 10.1007/s00198-011-1675-1 CrossRefPubMedGoogle Scholar
  41. 41.
    Gatti D, Viapiana O, Adami S, Idolazzi L, Fracassi E, Rossini M (2012) Bisphosphonate treatment of postmenopausal osteoporosis is associated with a dose dependent increase in serum sclerostin. Bone 50:739–742. doi: 10.1016/j.bone.2011.11.028 CrossRefPubMedGoogle Scholar
  42. 42.
    Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, Hofbauer LC, Lau E, Lewiecki EM, Miyauchi A, Zerbini CA, Milmont CE, Chen L, Maddox J, Meisner PD, Libanati C, Grauer A (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543. doi: 10.1056/NEJMoa1607948 CrossRefPubMedGoogle Scholar
  43. 43.
    Marenzana M, Greenslade K, Eddleston A, Okoye R, Marshall D, Moore A, Robinson MK (2011) Sclerostin antibody treatment enhances bone strength but does not prevent growth retardation in young mice treated with dexamethasone. Arthritis Rheum 63:2385–2395. doi: 10.1002/art.30385 CrossRefPubMedGoogle Scholar
  44. 44.
    Yao W, Dai W, Jiang L, Lay EY, Zhong Z, Ritchie RO, Li X, Ke H, Lane NE (2016) Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos Int 27:283–294. doi: 10.1007/s00198-015-3308-6 CrossRefPubMedGoogle Scholar
  45. 45.
    Sato AY, Cregor M, Delgado-Calle J, Condon KW, Allen MR, Peacock M, Plotkin LI, Bellido T (2016) Protection from glucocorticoid-induced osteoporosis by anti-catabolic signaling in the absence of Sost/sclerostin. J Bone Miner Res 31:1791–1802. doi: 10.1002/jbmr.2869 CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2017

Authors and Affiliations

  • Mai Kawazoe
    • 1
    • 2
  • Kaichi Kaneko
    • 2
  • Kotaro Shikano
    • 2
  • Natsuko Kusunoki
    • 2
  • Toshihiro Nanki
    • 1
    • 2
  • Shinichi Kawai
    • 3
    Email author
  1. 1.Department of Internal Medicine, Graduate School of MedicineToho UniversityTokyoJapan
  2. 2.Division of Rheumatology, Department of Internal Medicine, School of MedicineToho UniversityTokyoJapan
  3. 3.Department of Inflammation and Pain Control Research, School of MedicineToho UniversityTokyoJapan

Personalised recommendations