Skip to main content

Advertisement

Log in

Low pretreatment levels of myeloid-related protein-8/14 and C-reactive protein predict poor adherence to treatment with tumor necrosis factor inhibitors in juvenile idiopathic arthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Two thirds of patients with juvenile idiopathic arthritis (JIA) treated with tumor necrosis factor (TNF)-alpha inhibitors respond initially, but only about one third of patients achieve clinical remission at follow-up. We evaluated the 1-year response and long-term treatment adherence to TNF inhibitor treatment in JIA patients naive to biologics and investigated if baseline myeloid-related protein (MRP)-8/14 and C-reactive protein (CRP) were predictive of treatment response. One hundred fifty-two patients were included in a unicenter observational, prospective study from 2002 to 2015, excluding patients with systemic-onset JIA. One-year treatment response was evaluated by American College of Rheumatology-pediatric (ACR-ped) and by the number of patients achieving inactive disease (ID). Medical charts were reviewed for reasons of treatment withdrawal. After one year of treatment ACR-ped 30, 50, 70, and 90 were achieved by 61, 55, 38, and 10 % of the patients, and 23 % achieved a status of ID. Treatment adherence: 51 % withdrew from treatment due to lack of clinical effect, while 32 % continued treatment or withdrew due to disease remission. Increased MRP-8/14 concentrations at treatment initiation was associated with ID after 1 year (OR 1.55, CI 1.06–2.25, p = 0.02). Treatment withdrawal due to lack of effect was associated with low baseline levels of both MRP-8/14 (685 vs. 1235 ng/ml, p < 0.001) and CRP (0.75 vs. 2.73 mg/l, p < 0.001), verified by multivariable logistic regression analysis (OR 0.51, CI 0.34–0.77/OR 0.63, CI 0.48–0.83). In conclusion, an association was found between ID after 1 year of treatment and increased baseline levels of MRP-8/14. Furthermore, low baseline MRP-8/14 and CRP concentrations were associated with treatment withdrawal due to lack of clinical effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berntson L, Andersson GB, Fasth A, Herlin T, Kristinsson J, Lahdenne P, et al. (2003) Incidence of juvenile idiopathic arthritis in the Nordic countries. A population based study with special reference to the validity of the ILAR and EULAR criteria. J Rheumatol 30(10):2275–2282

    PubMed  Google Scholar 

  2. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31(2):390–392

    PubMed  Google Scholar 

  3. Giannini EH, Brewer EJ, Kuzmina N, Shaikov A, Maximov A, Vorontsov I, et al. (1992) Methotrexate in resistant juvenile rheumatoid arthritis. Results of the U.S.A.-U.S.S.R. double-blind, placebo-controlled trial. The Pediatric Rheumatology Collaborative Study Group and The Cooperative Children’s Study Group. N Engl J Med 326(16):1043–1049

    Article  CAS  PubMed  Google Scholar 

  4. Beukelman T, Patkar NM, Saag KG, Tolleson-Rinehart S, Cron RQ, DeWitt EM, et al. (2011) 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: initiation and safety monitoring of therapeutic agents for the treatment of arthritis and systemic features. Arthritis Care Res (Hoboken ) 63(4):465–482

    Article  Google Scholar 

  5. Ruperto N, Martini A (2011) Current medical treatments for juvenile idiopathic arthritis. Front Pharmacol 2:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hinze C, Gohar F, Foell D (2015) Management of juvenile idiopathic arthritis: hitting the target. Nat Rev Rheumatol 11(5):290–300

    Article  CAS  PubMed  Google Scholar 

  7. Lahdenne P, Vahasalo P, Honkanen V (2003) Infliximab or etanercept in the treatment of children with refractory juvenile idiopathic arthritis: an open label study. Ann Rheum Dis 62(3):245–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lovell DJ, Giannini EH, Reiff A, Cawkwell GD, Silverman ED, Nocton JJ, et al. (2000) Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. N Engl J Med 342(11):763–769

    Article  CAS  PubMed  Google Scholar 

  9. Lovell DJ, Reiff A, Ilowite NT, Wallace CA, Chon Y, Lin SL, et al. (2008) Safety and efficacy of up to eight years of continuous etanercept therapy in patients with juvenile rheumatoid arthritis. Arthritis Rheum 58(5):1496–1504

    Article  CAS  PubMed  Google Scholar 

  10. Lovell DJ, Ruperto N, Goodman S, Reiff A, Jung L, Jarosova K, et al. (2008) Adalimumab with or without methotrexate in juvenile rheumatoid arthritis. N Engl J Med 359(8):810–820

    Article  CAS  PubMed  Google Scholar 

  11. Ruperto N, Lovell DJ, Cuttica R, Woo P, Meiorin S, Wouters C, et al. (2010) Long-term efficacy and safety of infliximab plus methotrexate for the treatment of polyarticular-course juvenile rheumatoid arthritis: findings from an open-label treatment extension. Ann Rheum Dis 69(4):718–722

    Article  CAS  PubMed  Google Scholar 

  12. Horneff G, De BF, Foeldvari I, Girschick HJ, Michels H, Moebius D, et al. (2009) Safety and efficacy of combination of etanercept and methotrexate compared to treatment with etanercept only in patients with juvenile idiopathic arthritis (JIA): preliminary data from the German JIA Registry. Ann Rheum Dis 68(4):519–525

    Article  CAS  PubMed  Google Scholar 

  13. Schmeling H, Minden K, Foeldvari I, Ganser G, Hospach T, Horneff G (2014) Efficacy and safety of adalimumab as the first and second biologic agent in juvenile idiopathic arthritis: the German Biologics JIA Registry. Arthritis Rheumatol 66(9):2580–2589

    Article  CAS  PubMed  Google Scholar 

  14. Prince FH, Twilt M, Ten CR, van Rossum MA, Armbrust W, Hoppenreijs EP, et al. (2009) Long-term follow-up on effectiveness and safety of etanercept in juvenile idiopathic arthritis: the Dutch national register. Ann Rheum Dis 68(5):635–641

    Article  CAS  PubMed  Google Scholar 

  15. Otten MH, Prince FH, Armbrust W, Ten CR, Hoppenreijs EP, Twilt M, et al. (2011) Factors associated with treatment response to etanercept in juvenile idiopathic arthritis. JAMA 306(21):2340–2347

    Article  CAS  PubMed  Google Scholar 

  16. Anink J, van Suijlekom-Smit LW, Otten MH, Prince FH, van Rossum MA, Dolman KM, et al. (2015) MRP8/14 serum levels as a predictor of response to starting and stopping anti-TNF treatment in juvenile idiopathic arthritis. Arthritis Res Ther 17:200

    Article  PubMed  PubMed Central  Google Scholar 

  17. Geikowski T, Becker I, Horneff G (2014) Predictors of response to etanercept in polyarticular-course juvenile idiopathic arthritis. Rheumatology (Oxford) 53(7):1245–1249

    Article  CAS  Google Scholar 

  18. Romano M, Pontikaki I, Gattinara M, Ardoino I, Donati C, Boracchi P, et al. (2013) Drug survival and reasons for discontinuation of the first course of biological therapy in 301 juvenile idiopathic arthritis patients. Reumatismo 65(6):278–285

    Article  CAS  Google Scholar 

  19. Tynjala P, Vahasalo P, Honkanen V, Lahdenne P (2009) Drug survival of the first and second course of anti-tumour necrosis factor agents in juvenile idiopathic arthritis. Ann Rheum Dis 68(4):552–557

    Article  CAS  PubMed  Google Scholar 

  20. Southwood TR, Foster HE, Davidson JE, Hyrich KL, Cotter CB, Wedderburn LR, et al. (2011) Duration of etanercept treatment and reasons for discontinuation in a cohort of juvenile idiopathic arthritis patients. Rheumatology (Oxford) 50(1):189–195

    Article  CAS  Google Scholar 

  21. Solari N, Palmisani E, Consolaro A, Pistorio A, Viola S, Buoncompagni A, et al. (2013) Factors associated with achievement of inactive disease in children with juvenile idiopathic arthritis treated with etanercept. J Rheumatol 40(2):192–200

    Article  CAS  PubMed  Google Scholar 

  22. Rammes A, Roth J, Goebeler M, Klempt M, Hartmann M, Sorg C (1997) Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem 272(14):9496–9502

    Article  CAS  PubMed  Google Scholar 

  23. Roth J, Sunderkotter C, Goebeler M, Gutwald J, Sorg C (1992) Expression of the calcium-binding proteins MRP8 and MRP14 by early infiltrating cells in experimental contact dermatitis. Int Arch Allergy Immunol 98(2):140–145

    Article  CAS  PubMed  Google Scholar 

  24. Vaos G, Kostakis ID, Zavras N, Chatzemichael A (2013) The role of calprotectin in pediatric disease. Biomed Res Int 2013:542363

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frosch M, Strey A, Vogl T, Wulffraat NM, Kuis W, Sunderkotter C, et al. (2000) Myeloid-related proteins 8 and 14 are specifically secreted during interaction of phagocytes and activated endothelium and are useful markers for monitoring disease activity in pauciarticular-onset juvenile rheumatoid arthritis. Arthritis Rheum 43(3):628–637

    Article  CAS  PubMed  Google Scholar 

  26. Abildtrup M, Kingsley GH, Scott DL (2015) Calprotectin as a biomarker for rheumatoid arthritis: a systematic review. J Rheumatol 42(5):760–770

    Article  CAS  PubMed  Google Scholar 

  27. Frosch M, Vogl T, Seeliger S, Wulffraat N, Kuis W, Viemann D, et al. (2003) Expression of myeloid-related proteins 8 and 14 in systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum 48(9):2622–2626

    Article  CAS  PubMed  Google Scholar 

  28. Foell D, Roth J (2004) Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum 50(12):3762–3771

    Article  CAS  PubMed  Google Scholar 

  29. Foell D, Wulffraat N, Wedderburn LR, Wittkowski H, Frosch M, Gerss J, et al. (2010) Methotrexate withdrawal at 6 vs 12 months in juvenile idiopathic arthritis in remission: a randomized clinical trial. JAMA 303(13):1266–1273

    Article  CAS  PubMed  Google Scholar 

  30. Gerss J, Roth J, Holzinger D, Ruperto N, Wittkowski H, Frosch M, et al. (2012) Phagocyte-specific S100 proteins and high-sensitivity C reactive protein as biomarkers for a risk-adapted treatment to maintain remission in juvenile idiopathic arthritis: a comparative study. Ann Rheum Dis 71(12):1991–1997

    Article  CAS  PubMed  Google Scholar 

  31. Moncrieffe H, Ursu S, Holzinger D, Patrick F, Kassoumeri L, Wade A, et al. (2013) A subgroup of juvenile idiopathic arthritis patients who respond well to methotrexate are identified by the serum biomarker MRP8/14 protein. Rheumatology (Oxford) 52(8):1467–1476

    Article  CAS  Google Scholar 

  32. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111(12):1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454

    Article  CAS  PubMed  Google Scholar 

  34. Petty RE, Laxer RM, Lindsley CB, LR. W (2016) Textbook of pediatric rheumatology, Textbook of Pediatric Rheumatology, 7th edn. Elsevier-Saunders, Philadelphia, pp. 188–204

    Book  Google Scholar 

  35. Nordal EB, Zak M, Aalto K, Berntson L, Fasth A, Herlin T, et al. (2012) Validity and predictive ability of the juvenile arthritis disease activity score based on CRP versus ESR in a Nordic population-based setting. Ann Rheum Dis 71(7):1122–1127

    Article  CAS  PubMed  Google Scholar 

  36. Ravelli A, Martini A (2007) Juvenile idiopathic arthritis. Lancet 369(9563):767–778

    Article  CAS  PubMed  Google Scholar 

  37. De BF, Martini A (2005) Targeting the interleukin-6 receptor: a new treatment for systemic juvenile idiopathic arthritis? Arthritis Rheum 52(3):687–693

    Article  Google Scholar 

  38. Giannini EH, Ruperto N, Ravelli A, Lovell DJ, Felson DT, Martini A (1997) Preliminary definition of improvement in juvenile arthritis. Arthritis Rheum 40(7):1202–1209

    Article  CAS  PubMed  Google Scholar 

  39. Wallace CA, Giannini EH, Huang B, Itert L, Ruperto N (2011) American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res (Hoboken ) 63(7):929–936

    Article  Google Scholar 

  40. Jabs DA, Nussenblatt RB, Rosenbaum JT (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140(3):509–516

    Article  PubMed  Google Scholar 

  41. van Dijkhuizen EH, Wulffraat NM (2015) Early predictors of prognosis in juvenile idiopathic arthritis: a systematic literature review. Ann Rheum Dis 74(11):1996–2005

    Article  PubMed  Google Scholar 

  42. Lindley DV (2005) Bayes’ theorem. In: Armitage P, Colton T (eds) Encyclopedia of. Biostatistics 1. Wiley, Minehead UK

    Google Scholar 

  43. Roth J, Goebeler M, van den Bos C, Sorg C (1993) Expression of calcium-binding proteins MRP8 and MRP14 is associated with distinct monocytic differentiation pathways in HL-60 cells. Biochem Biophys Res Commun 191(2):565–570

    Article  CAS  PubMed  Google Scholar 

  44. Huttenlocher A, Smith JA (2015) Neutrophils in pediatric autoimmune disease. Curr Opin Rheumatol 27(5):500–504

    Article  CAS  PubMed  Google Scholar 

  45. Ringold S, Weiss PF, Beukelman T, DeWitt EM, Ilowite NT, Kimura Y, et al. (2013) 2013 update of the 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: recommendations for the medical therapy of children with systemic juvenile idiopathic arthritis and tuberculosis screening among children receiving biologic medications. Arthritis Rheum 65(10):2499–2512

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the children and parents who participated in the study. Furthermore, we would like to express our gratitude for the work put in by the staff at the Pediatric Rheumatology Department and at the Institute of Inflammation Research at Copenhagen University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikel Alberdi-Saugstrup.

Ethics declarations

The study was conducted in accordance with the Declaration of Helsinki and Research Ethics Committees. The trial approval number was SJ-239/SJ-240/SJ-241, from the Regional Research Ethics committee in Region Zealand.

Disclosures

None.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberdi-Saugstrup, M., Nielsen, S., Mathiessen, P. et al. Low pretreatment levels of myeloid-related protein-8/14 and C-reactive protein predict poor adherence to treatment with tumor necrosis factor inhibitors in juvenile idiopathic arthritis. Clin Rheumatol 36, 67–75 (2017). https://doi.org/10.1007/s10067-016-3375-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-016-3375-x

Keywords

Navigation