Clinical Rheumatology

, Volume 36, Issue 3, pp 625–634 | Cite as

Three subgroups of pain profiles identified in 227 women with arthritis: a latent class analysis

  • Katie de LucaEmail author
  • Lynne Parkinson
  • Aron Downie
  • Fiona Blyth
  • Julie Byles
Original Article


The objectives were to identify subgroups of women with arthritis based upon the multi-dimensional nature of their pain experience and to compare health and socio-demographic variables between subgroups. A latent class analysis of 227 women with self-reported arthritis was used to identify clusters of women based upon the sensory, affective, and cognitive dimensions of the pain experience. Multivariate multinomial logistic regression analysis was used to determine the relationship between cluster membership and health and sociodemographic characteristics. A three-class cluster model was most parsimonious. 39.5 % of women had a unidimensional pain profile; 38.6 % of women had moderate multidimensional pain profile that included additional pain symptomatology such as sensory qualities and pain catastrophizing; and 21.9 % of women had severe multidimensional pain profile that included prominent pain symptomatology such as sensory and affective qualities of pain, pain catastrophizing, and neuropathic pain. Women with severe multidimensional pain profile have a 30.5 % higher risk of poorer quality of life and a 7.3 % higher risk of suffering depression, and women with moderate multidimensional pain profile have a 6.4 % higher risk of poorer quality of life when compared to women with unidimensional pain. This study identified three distinct subgroups of pain profiles in older women with arthritis. Women had very different experiences of pain, and cluster membership impacted significantly on health-related quality of life. These preliminary findings provide a stronger understanding of profiles of pain and may contribute to the development of tailored treatment options in arthritis.


Epidemiology Latent class analysis Osteoarthritis Pain Rheumatoid arthritis 



The research on which this paper is based was conducted as part of the Australian Longitudinal Study on Women’s Health, the University of Newcastle, and the University of Queensland. We are grateful to the Australian Government, Department of Health, for funding and to the women who provided the survey data. This work was supported by the Hunter Medical Research Institute, supported by the Lions Club of Adamstown Research Project Grant. Katie de Luca acknowledges the receipt of the Australian Postgraduate Award Scholarship and COCA Research Limited Top up Scholarship contributions. Professor Gillian Hawker is acknowledged for her contribution to the design of the sub study survey.

Compliance with ethical standards


This work was supported by the Hunter Medical Research Institute, via the Lions Club of Adamstown, NSW Australia (grant number HMRI 11-35).

Authors’ contributions

KD, LP, FB, and JB made substantial contributions to the design and the acquisition of data. KD and AD conducted the statistical analysis. All authors made substantial contributions to the interpretation of data, have been involved in drafting the manuscript, and have given final approval of the version to be published.




  1. 1.
    Gignac MA, Cott C, Badley EM (2000) Adaptation to chronic illness and disability and its relationship to perceptions of independence and dependence. J Gerontol B Psychol Sci Soc Sci 55(6):362–72CrossRefGoogle Scholar
  2. 2.
    Hutchings A, Calloway M, Choy E, Hooper M, Hunter DJ, Jordan JM et al (2007) The Longitudinal Examination of Arthritis Pain (LEAP) study: relationships between weekly fluctuations in patient-rated joint pain and other health outcomes. J Rheumatol 34(11):2291–300PubMedGoogle Scholar
  3. 3.
    de Luca K, Parkinson L, Pollard H, Byles J, Blyth F (2015) How is the experience of pain measured in older, community-dwelling people with osteoarthritis? A systematic review of the literature. Rheum Int 35(9):1461–72. doi: 10.1007/s00296-015-3268- CrossRefGoogle Scholar
  4. 4.
    Lane NE, Brandt K, Hawker G, Peeva E, Schreyer E, Tsuji W et al (2011) OARSI-FDA initiative: defining the disease state of osteoarthritis. Osteoarthritis Cartilage 19(5):478–82. doi: 10.1016/j.joca.2010.09.013 CrossRefPubMedGoogle Scholar
  5. 5.
    Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150(3699):971–9CrossRefPubMedGoogle Scholar
  6. 6.
    Melzack R, Katz J (2013) Pain. WIREs Cogn Sci 4:1–15. doi: 10.1002/wcs.1201 CrossRefGoogle Scholar
  7. 7.
    Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288(5472):1769–72. doi: 10.1126/science.288.5472.1769 CrossRefPubMedGoogle Scholar
  8. 8.
    Ciccone DS, Grzesiak RC (1982) Cognitive dimensions of chronic pain. Soc Sci Med 19(12):1339–45CrossRefGoogle Scholar
  9. 9.
    Murphy SL, Lyden AK, Phillips K, Clauw DJ, Williams DA (2011) Subgroups of older adults with osteoarthritis based upon differing comorbid symptom presentations and potential underlying pain mechanisms. Arthritis Res Ther 13(4):135. doi: 10.1186/ar3449 CrossRefGoogle Scholar
  10. 10.
    Knoop J, van der Leeden M, Thorstensson CA, Roorda LD, Lems WF, Knol DL et al (2011) Identification of phenotypes with different clinical outcomes in knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken) 63(11):1535–42. doi: 10.1002/acr.20571 CrossRefGoogle Scholar
  11. 11.
    Cruz-Almeida Y, King CD, Goodin BR, Sibille KT, Glover TL, Riley JL et al (2013) Psychological profiles and pain characteristics of older adults with knee osteoarthritis. Arthritis Care Res (Hoboken) 65(11):1786–94. doi: 10.1002/acr.22070 CrossRefGoogle Scholar
  12. 12.
    de Luca K, Parkinson L, Byles J (2014) A study protocol for the profile of pain in older women: assessing the multi dimensional nature of the experience of pain in arthritis. Chiropr Man Therap 22:28. doi: 10.1186/s12998-014-0028-5 CrossRefGoogle Scholar
  13. 13.
    Von Korff M, Ormel J, Keefe FJ, Dworkin SF (1992) Grading the severity of chronic pain. Pain 50(2):133–49CrossRefGoogle Scholar
  14. 14.
    Melzack R (1987) The short-form McGill Pain Questionnaire. Pain 30(2):191–7CrossRefPubMedGoogle Scholar
  15. 15.
    Freynhagen R, Baron R, Gockel U, Tolle TR (2006) painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin 22(10):1911–20. doi: 10.1185/030079906x132488 CrossRefPubMedGoogle Scholar
  16. 16.
    Von Korff M, Dworkin SF, Le Resche L (1990) Graded chronic pain status: an epidemiologic evaluation. Pain 40(3):279–91CrossRefGoogle Scholar
  17. 17.
    Hochman JR, Davis AM, Elkayam J, Gagliese L, Hawker GA (2013) Neuropathic pain symptoms on the modified painDETECT correlate with signs of central sensitization in knee osteoarthritis. Osteoarthritis Cartilage 21(9):1236–42. doi: 10.1016/j.joca.2013.06.023 CrossRefPubMedGoogle Scholar
  18. 18.
    Sullivan M, Bishop S, Pivik J (1995) The Pain Catastrophizing Scale: development and validation. Psychol Assess 7:524–32CrossRefGoogle Scholar
  19. 19.
    Altman D, Royston P (2006) The cost of dichotomising continuous variables. BMJ 332:1080CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sullivan M (2009) The Pain Catastrophizing Scale: user manual. McGill University, Montreal, pp 1–36Google Scholar
  21. 21.
    Ware J, Snow K, Kosinski M, Gandek B (1993) SF-36 Health Survey. Manual and interpretation guide. The Health Institute, New England Medical Center, BostonGoogle Scholar
  22. 22.
    Berlin KS, Williams NA, Parra GR (2014) An introduction to latent variable mixture modeling (part 1): overview and cross-sectional latent class and latent profile analyses. J Pediatr Psychol 39(2):174–87. doi: 10.1093/jpepsy/jst084 CrossRefPubMedGoogle Scholar
  23. 23.
    Lin TH, Dayton CM (1997) Model selection information criteria for non-nested latent class models. J Educ Behav Stat 22(3):249–64. doi: 10.3102/10769986022003249 CrossRefGoogle Scholar
  24. 24.
    Nylund KL, Asparouhov T, Muthén BO (2007) Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Struct Equ Modeling 14(4):535–69. doi: 10.1080/10705510701575396 CrossRefGoogle Scholar
  25. 25.
    Langeheine R, Pannekoek J, Van De Pol F (1996) Bootstrapping goodness-of-fit measures in categorical data analysis. Sociol Methods Res 24(4):492–516. doi: 10.1177/0049124196024004004 CrossRefGoogle Scholar
  26. 26.
    Bakk Z, Tekle FB, Vermunt JK (2013) Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches. Sociol Methodol 43(1):272–311. doi: 10.1177/0081175012470644 CrossRefGoogle Scholar
  27. 27.
    O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–90. doi: 10.1007/s11135-006-9018-6 CrossRefGoogle Scholar
  28. 28.
    Gagné P, Dayton CM (2002) Best regression model using information criteria. J Mod Appl Stat Methods 1(2):57CrossRefGoogle Scholar
  29. 29.
    Andruff H, Carraro N, Thompson A, Gaudreau P, Louvet B (2009) Latent class growth modelling: a tutorial. Tutor Quant Methods Psychol 5(1):11–24CrossRefGoogle Scholar
  30. 30.
    Moreton BJ, Tew V, das Nair R, Wheeler M, Walsh DA, Lincoln NB (2015) Pain phenotype in patients with knee osteoarthritis: classification and measurement properties of painDETECT and self-report Leeds assessment of neuropathic symptoms and signs scale in a cross-sectional study. Arthritis Care Res (Hoboken) 67(4):519–28. doi: 10.1002/acr.22431 CrossRefGoogle Scholar
  31. 31.
    Lee YC, Frits ML, Iannaccone CK, Weinblatt ME, Shadick NA, Williams DA et al (2014) Subgrouping of patients with rheumatoid arthritis based on pain, fatigue, inflammation, and psychosocial factors. Arthritis Rheumatol 66(8):2006–14. doi: 10.1002/art.38682 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Peeters G, Parkinson L, Badley E, Jones M, Brown WJ, Dobson AJ et al (2013) Contemporaneous severity of symptoms and functioning reflected by variations in reporting doctor-diagnosed osteoarthritis. Arthritis Care Res (Hoboken) 65(6):945–53. doi: 10.1002/acr.21929 CrossRefGoogle Scholar
  33. 33.
    Caporali R, Cavagna L, Montecucco C (2009) Pain in arthritis. Eur J Pain Suppl 3:123–7CrossRefGoogle Scholar
  34. 34.
    Fitzcharles MA, Shir Y (2008) New concepts in rheumatic pain. Rheum Dis Clin North Am 34(2):267–83. doi: 10.1016/j.rdc.2008.03.005 CrossRefPubMedGoogle Scholar
  35. 35.
    Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH et al (2010) Sensitization in patients with painful knee osteoarthritis. Pain 149(3):573–81. doi: 10.1016/j.pain.2010.04.003 CrossRefPubMedGoogle Scholar
  36. 36.
    Wood LR, Peat G, Thomas E, Duncan R (2007) Knee osteoarthritis in community-dwelling older adults: are there characteristic patterns of pain location? Osteoarthritis Cartilage 15(6):615–23. doi: 10.1016/j.joca.2006.12.001 CrossRefPubMedGoogle Scholar
  37. 37.
    Hochman JR, Gagliese L, Davis AM, Hawker GA (2011) Neuropathic pain symptoms in a community knee OA cohort. Osteoarthritis Cartilage 19(6):647–54. doi: 10.1016/j.joca.2011.03.007 CrossRefPubMedGoogle Scholar
  38. 38.
    Cohen SP, Mao J (2014) Neuropathic pain: mechanisms and their clinical implications. BMJ 348:f7656. doi: 10.1136/bmj.f7656 CrossRefPubMedGoogle Scholar
  39. 39.
    Foster NE, Hill JC, Hay EM (2011) Subgrouping patients with low back pain in primary care: are we getting any better at it? Man Ther 16(1):3–8. doi: 10.1016/j.math.2010.05.013 CrossRefPubMedGoogle Scholar
  40. 40.
    Whitehurst DG, Bryan S, Lewis M, Hay EM, Mullis R, Foster NE (2015) Implementing stratified primary care management for low back pain: cost-utility analysis alongside a prospective, population-based, sequential comparison study. Spine 40(6):405–14. doi: 10.1097/BRS.0000000000000770 CrossRefPubMedGoogle Scholar
  41. 41.
    Foster NE, Mullis R, Hill JC, Lewis M, Whitehurst DG, Doyle C et al (2014) Effect of stratified care for low back pain in family practice (IMPaCT Back): a prospective population-based sequential comparison. Ann Fam Med 12(2):102–11. doi: 10.1370/afm.1625 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Foster NE, Hill JC, O’Sullivan P, Hancock M (2013) Stratified models of care. Best Pract Res Clin Rheumatol 27(5):649–61. doi: 10.1016/j.berh.2013.10.005 CrossRefPubMedGoogle Scholar
  43. 43.
    Kent P, Stochkendahl MJ, Christensen HW, Kongsted A (2015) Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach? Chiropr Man Therap 23:20. doi: 10.1186/s12998-015-0064-9 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Thakur M, Dickenson AH, Baron R (2014) Osteoarthritis pain: nociceptive or neuropathic? Nat Rev Rheumatol 10(6):374–80. doi: 10.1038/nrrheum.2014.47 CrossRefPubMedGoogle Scholar
  45. 45.
    Keefe FJ, Smith SJ, Buffington AL, Gibson J, Studts JL, Caldwell DS (2002) Recent advances and future directions in the biopsychosocial assessment and treatment of arthritis. J Consult Clin Psychol 70(3):640–55CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2016

Authors and Affiliations

  1. 1.Research Centre for Gender Health and AgeingUniversity of NewcastleCallaghanAustralia
  2. 2.School of Human Health and Social SciencesCentral Queensland UniversityRockhamptonAustralia
  3. 3.George Institute for Global HealthUniversity of SydneySydneyAustralia
  4. 4.Faculty of Science and EngineeringMacquarie UniversitySydneyAustralia
  5. 5.Concord Clinical SchoolUniversity of SydneySydneyAustralia

Personalised recommendations