Advertisement

Clinical Rheumatology

, Volume 35, Issue 6, pp 1501–1506 | Cite as

Changes in fecal microbiota and metabolomics in a child with juvenile idiopathic arthritis (JIA) responding to two treatment periods with exclusive enteral nutrition (EEN)

  • Lillemor BerntsonEmail author
  • Peter Agback
  • Johan Dicksved
Original Article

Abstract

The microbiome and immune system of the digestive tract are highly important in both health and disease. Exclusive enteral nutrition (EEN) is a common anti-inflammatory treatment in children with Crohn’s disease in the European countries, and the mechanism is most likely linked to changes in the intestinal microbiome. In the present study, EEN was given in two treatment periods several months apart to a patient with very severe, disabling juvenile idiopathic arthritis (JIA), with a remarkable clinical response as the result. The aim of the present study was to study how the EEN treatment influenced the microbiome and metabolome of this patient. Fecal samples from before, during, and between treatments with EEN were studied. The microbiome was analyzed by sequencing of 16S rRNA amplicons using Illumina MiSeq, and the metabolome was analyzed using nuclear magnetic resonance. The microbiome changed markedly from treatment with EEN, with a strong reduction of the Bacteroidetes phylum. Metabolic profiles showed clear differences before, during, and between treatment with EEN, where butyrate, propionate, and acetate followed a cyclic pattern with the lowest levels at the end of each treatment period. This patient with JIA showed remarkable clinical improvement after EEN treatment, and we found corresponding changes in both the fecal microbiome and the metabolome. Further studies are needed to explore the pathophysiological role of the intestinal canal in children with JIA.

Keywords

Exclusive enteral nutrition Juvenile idiopathic arthritis Metabolomics Microbiota 

Notes

Acknowledgments

This work was supported by grants from the Department of Women’s and Children’s Health, Uppsala University Hospital, Uppsala, and the Gillbergska Foundation, Uppsala.

Compliance with ethical standard

The study was approved by the regional ethics committee in Uppsala County (Dnr 2012/378). Oral as well as written consent was obtained from the patient’s parents.

Disclosures

None.

References

  1. 1.
    Petty RE et al (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31(2):390–392PubMedGoogle Scholar
  2. 2.
    Stoll ML, Punaro M, Patel AS (2011) Fecal calprotectin in children with the enthesitis-related arthritis subtype of juvenile idiopathic arthritis. J Rheumatol 38(10):2274–2275CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Conti F et al (2005) Chronic intestinal inflammation and seronegative spondyloarthropathy in children. Dig Liver Dis 37(10):761–767CrossRefPubMedGoogle Scholar
  4. 4.
    Lionetti P et al (2000) Evidence of subclinical intestinal inflammation by 99m technetium leukocyte scintigraphy in patients with HLA-B27 positive juvenile onset active spondyloarthropathy. J Rheumatol 27(6):1538–1541PubMedGoogle Scholar
  5. 5.
    Arvonen M et al (2012) Altered expression of intestinal human leucocyte antigen D-related and immune signalling molecules in juvenile idiopathic arthritis. Clin Exp Immunol 170(3):266–273CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Scher JU et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2:e01202CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Costello ME et al (2014) Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol 67(3):686–691CrossRefGoogle Scholar
  9. 9.
    Scher JU et al (2015) Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 67(1):128–139CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stoll ML et al (2014) Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther 16(6):486CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tejesvi MV et al (2015) Faecal microbiome in new-onset juvenile idiopathic arthritis. Eur J Clin Microbiol Infect DisGoogle Scholar
  12. 12.
    Gevers D et al (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15(3):382–392CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kolho KL et al (2015) Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am J Gastroenterol 110(6):921–930CrossRefPubMedGoogle Scholar
  14. 14.
    Leach ST, Mitchell HM, Eng WR, Zhang L, Day AS (2008) Sustained modulation of intestinal bacteria by exclusive enteral nutrition used to treat children with Crohn’s disease. Aliment Pharmacol Ther 28(6):724–733CrossRefPubMedGoogle Scholar
  15. 15.
    Zachos M, Tondeur M, Griffiths AM (2007) Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst Rev 1:CD000542PubMedGoogle Scholar
  16. 16.
    Tjellstrom B et al (2012) Effect of exclusive enteral nutrition on gut microflora function in children with Crohn’s disease. Scand J Gastroenterol 47(12):1454–1459CrossRefPubMedGoogle Scholar
  17. 17.
    Gerasimidis K et al (2014) Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn’s disease during enteral nutrition. Inflamm Bowel Dis 20(5):861–871CrossRefPubMedGoogle Scholar
  18. 18.
    Furusawa Y et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450CrossRefPubMedGoogle Scholar
  19. 19.
    Fischer R, Bowness P, Kessler BM (2013) Two birds with one stone: doing metabolomics with your proteomics kit. Proteomics 13(23-24):3371–3386CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Puchades-Carrasco L, Palomino-Schatzlein M, Perez-Rambla C, Pineda-Lucena A (2015) Bioinformatics tools for the analysis of NMR metabolomics studies focused on the identification of clinically relevant biomarkers. Brief BioinformGoogle Scholar
  21. 21.
    Berntson L (2014) Anti-inflammatory effect by exclusive enteral nutrition (EEN) in a patient with juvenile idiopathic arthritis (JIA): brief report. Clin Rheumatol 33(8):1173–1175CrossRefPubMedGoogle Scholar
  22. 22.
    Kampmann C, Dicksved J, Engstrand L, Rautelin H (2015) Composition of human faecal microbiota in resistance to Campylobacter infection. Clin Microbiol Infect 22 (1):61.e61–61.e68Google Scholar
  23. 23.
    Hugerth LW et al (2014) DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies. Appl Environ Microbiol 80(16):5116–5123CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Engstrand Lilja H, Wefer H, Nystrom N, Finkel Y, Engstrand L (2015) Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome. Microbiome 3:18CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRefPubMedGoogle Scholar
  27. 27.
    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Giongo A et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5(1):82–91CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Murri M et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK (2011) Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 19(7):349–359CrossRefPubMedGoogle Scholar
  32. 32.
    Madsen RK et al (2011) Diagnostic properties of metabolic perturbations in rheumatoid arthritis. Arthritis Res Ther 13(1):R19CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2016

Authors and Affiliations

  • Lillemor Berntson
    • 1
    • 4
    Email author
  • Peter Agback
    • 2
  • Johan Dicksved
    • 3
  1. 1.Department of Women’s and Children’s HealthUppsala UniversityUppsalaSweden
  2. 2.Department of Chemistry and BiotechnologySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Department of Animal Nutrition and ManagementSwedish University of Agricultural SciencesUppsalaSweden
  4. 4.Department of Pediatrics, Unit for Pediatric RheumatologyUppsala University HospitalUppsalaSweden

Personalised recommendations