Clinical Rheumatology

, Volume 33, Issue 11, pp 1575–1583 | Cite as

Coffee or tea consumption and the risk of rheumatoid arthritis: a meta-analysis

  • Young Ho Lee
  • Sang-Cheol Bae
  • Gwan Gyu Song
Original Article


The aim of this study was to analyze published results for an association between coffee or tea intake and the development of rheumatoid arthritis (RA). We investigated the evidence for a relationship between coffee or tea consumption and the development of RA by performing a meta-analysis of the published results. Five studies (three cohort and two case–control studies) including 134,901 participants (1,279 cases of RA and 133,622 noncases) were considered in the meta-analysis. Meta-analysis of the cohort studies revealed a trend of an association between total coffee intake and RA incidence (relative risk [RR] of the highest versus the lowest group = 4.148, 95 % confidence interval [CI] = 0.792–21.73, p = 0.092). Meta-analysis of case–control studies showed a significant association between total coffee intake and RA incidence (RR = 1.201, 95 % CI = 1.058–1.361, p = 0.005). Combining the data of the cohort and case–control studies showed a significant association between total coffee intake and RA incidence (RR = 2.426, 95 % CI = 1.060–5.554, p = 0.036). Meta-analysis stratified by seropositivity indicated a significant association between coffee consumption and seropositive RA risk (RR = 1.329, 95 % CI = 1.162–1.522, p = 3.5 × 10−5), but not seronegative RA risk (RR = 1.093, 95 % CI = 0.884–1.350, p = 0.411). No association was found between tea intake and RA incidence (RR = 0.880, 95 % CI = 0.624–1.239, p = 0.463). This meta-analysis of 134,901 participants (most of the participants were controls) suggests that high coffee consumption is associated with an elevated risk of RA development. The association between coffee and RA was found in seropositive RA, but not in seronegative RA.


Coffee Rheumatoid arthritis Tea 



This study is supported by a grant from the Korea Healthcare Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (A102065).

Conflict of interest

The authors have no financial and nonfinancial conflicts of interest to declare.


  1. 1.
    Harris ED Jr (1990) Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med 322(18):1277–1289PubMedCrossRefGoogle Scholar
  2. 2.
    Choi SJ, Rho YH, Ji JD, Song GG, Lee YH (2006) Genome scan meta-analysis of rheumatoid arthritis. Rheumatology (Oxford) 45(2):166–170CrossRefGoogle Scholar
  3. 3.
    Stolt P, Bengtsson C, Nordmark B, Lindblad S, Lundberg I, Klareskog L et al (2003) Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case–control study, using incident cases. Ann Rheum Dis 62(9):835–841PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Michou L, Teixeira VH, Pierlot C, Lasbleiz S, Bardin T, Dieude P et al (2008) Associations between genetic factors, tobacco smoking and autoantibodies in familial and sporadic rheumatoid arthritis. Ann Rheum Dis 67(4):466–470PubMedCrossRefGoogle Scholar
  5. 5.
    Aho K, Heliovaara M (2004) Risk factors for rheumatoid arthritis. Ann Med 36(4):242–251PubMedCrossRefGoogle Scholar
  6. 6.
    Karlson EW, Mandl LA, Aweh GN, Grodstein F (2003) Coffee consumption and risk of rheumatoid arthritis. Arthritis Rheum 48(11):3055–3060PubMedCrossRefGoogle Scholar
  7. 7.
    Mikuls TR, Cerhan JR, Criswell LA, Merlino L, Mudano AS, Burma M et al (2002) Coffee, tea, and caffeine consumption and risk of rheumatoid arthritis: results from the Iowa Women’s Health Study. Arthritis Rheum 46(1):83–91PubMedCrossRefGoogle Scholar
  8. 8.
    Pedersen M, Jacobsen S, Klarlund M, Pedersen BV, Wiik A, Wohlfahrt J et al (2006) Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides. Arthritis Res Ther 8(4):R133PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Heliovaara M, Aho K, Knekt P, Impivaara O, Reunanen A, Aromaa A (2000) Coffee consumption, rheumatoid factor, and the risk of rheumatoid arthritis. Ann Rheum Dis 59(8):631–635PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Pattison DJ, Symmons DP, Young A (2004) Does diet have a role in the aetiology of rheumatoid arthritis? Proc Nutr Soc 63(1):137–143PubMedCrossRefGoogle Scholar
  11. 11.
    Lee YH, Rho YH, Choi SJ, Ji JD, Song GG, Nath SK et al (2007) The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxford) 46(1):49–56CrossRefGoogle Scholar
  12. 12.
    Lee YH, Rho YH, Choi SJ, Ji JD, Song GG (2007) PADI4 polymorphisms and rheumatoid arthritis susceptibility: a meta-analysis. Rheumatol Int 27(9):827–833PubMedCrossRefGoogle Scholar
  13. 13.
    Lee YH, Bae SC, Choi SJ, Ji JD, Song GG (2011) Associations between vitamin D receptor polymorphisms and susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Mol Biol Rep 38(6):3643–3651PubMedCrossRefGoogle Scholar
  14. 14.
    Davey P, Grainger D, MacMillan J, Rajan N, Aristides M, Gliksman M (1997) Clinical outcomes with insulin lispro compared with human regular insulin: a meta-analysis. Clin Ther 19(4):656–674PubMedCrossRefGoogle Scholar
  15. 15.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188PubMedCrossRefGoogle Scholar
  16. 16.
    Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12PubMedCrossRefGoogle Scholar
  17. 17.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558PubMedCrossRefGoogle Scholar
  18. 18.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463PubMedCrossRefGoogle Scholar
  20. 20.
    Pattison DJ, Symmons DP, Lunt M, Welch A, Luben R, Bingham SA et al (2004) Dietary risk factors for the development of inflammatory polyarthritis: evidence for a role of high level of red meat consumption. Arthritis Rheum 50(12):3804–3812PubMedCrossRefGoogle Scholar
  21. 21.
    Pedersen M, Jacobsen S, Garred P, Madsen HO, Klarlund M, Svejgaard A et al (2007) Strong combined gene-environment effects in anti-cyclic citrullinated peptide-positive rheumatoid arthritis: a nationwide case–control study in Denmark. Arthritis Rheum 56(5):1446–1453PubMedCrossRefGoogle Scholar
  22. 22.
    Pedersen M, Stripp C, Klarlund M, Olsen SF, Tjonneland AM, Frisch M (2005) Diet and risk of rheumatoid arthritis in a prospective cohort. J Rheumatol 32(7):1249–1252PubMedGoogle Scholar
  23. 23.
    Lahiri M, Morgan C, Symmons DP, Bruce IN (2012) Modifiable risk factors for RA: prevention, better than cure? Rheumatology (Oxford) 51(3):499–512CrossRefGoogle Scholar
  24. 24.
    Jiang X, Zhang D, Jiang W (2014) Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr 53(1):25–38PubMedCrossRefGoogle Scholar
  25. 25.
    Bravi F, Bosetti C, Tavani A, Gallus S, La Vecchia C (2013) Coffee reduces risk for hepatocellular carcinoma: an updated meta-analysis. Clin Gastroenterol Hepatol 11(11):1413–1421, e1PubMedCrossRefGoogle Scholar
  26. 26.
    Li XJ, Ren ZJ, Qin JW, Zhao JH, Tang JH, Ji MH et al (2013) Coffee consumption and risk of breast cancer: an up-to-date meta-analysis. PLoS One 8(1):e52681PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Ito K, Nakazato T, Miyakawa Y, Yamato K, Ikeda Y, Kizaki M (2003) Caffeine induces G2/M arrest and apoptosis via a novel p53-dependent pathway in NB4 promyelocytic leukemia cells. J Cell Physiol 196(2):276–283PubMedCrossRefGoogle Scholar
  28. 28.
    Cheng B, Liu X, Gong H, Huang L, Chen H, Zhang X et al (2011) Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. J Agric Food Chem 59(24):13147–13155PubMedCrossRefGoogle Scholar
  29. 29.
    McCandless LC (2012) Meta-analysis of observational studies with unmeasured confounders. Int J Biostat 8(2)Google Scholar
  30. 30.
    Kopec JA, Esdaile JM (1990) Bias in case–control studies. A review. J Epidemiol Community Health 44(3):179–186PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Chen D, Milacic V, Chen MS, Wan SB, Lam WH, Huo C et al (2008) Tea polyphenols, their biological effects and potential molecular targets. Histol Histopathol 23(4):487–496PubMedCentralPubMedGoogle Scholar
  32. 32.
    Wang W, Yang Y, Zhang W, Wu W(2014) Association of tea consumption and the risk of oral cancer: a meta-analysis. Oral OncolGoogle Scholar
  33. 33.
    Heliovaara M, Knekt P, Aho K, Aaran RK, Alfthan G, Aromaa A (1994) Serum antioxidants and risk of rheumatoid arthritis. Ann Rheum Dis 53(1):51–53PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Dutra MF, Bristot IJ, Batassini C, Cunha NB, Vizuete AF, de Souza DF et al (2012) Effects of chronic caloric restriction on kidney and heart redox status and antioxidant enzyme activities in Wistar rats. BMB Rep 45(11):671–676PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Clinical Rheumatology 2014

Authors and Affiliations

  1. 1.Division of Rheumatology, Department of Internal MedicineKorea University Anam Hospital, Korea University College of MedicineSeoulSouth Korea
  2. 2.The Hospital for Rheumatic DiseasesHanyang University Medical CenterSeoulSouth Korea

Personalised recommendations