Clinical Rheumatology

, Volume 32, Issue 5, pp 609–615 | Cite as

Identification of transcription regulatory relationships in rheumatoid arthritis and osteoarthritis

  • Guofeng Li
  • Ning Han
  • Zengchun LiEmail author
  • Qingyou Lu
Original Article


Rheumatoid arthritis (RA) is recognized as the most crippling or disabling type of arthritis, and osteoarthritis (OA) is the most common form of arthritis. These diseases severely reduce the quality of life, and cause high socioeconomic burdens. However, the molecular mechanisms of RA and OA development remain elusive despite intensive research efforts. In this study, we aimed to identify the potential transcription regulatory relationships between transcription factors (TFs) and differentially co-expressed genes (DCGs) in RA and OA, respectively. We downloaded the gene expression profiles of RA and OA from the Gene Expression Omnibus and analyzed the gene expression using computational methods. We identified a set of 4,076 DCGs in pairwise comparisons between RA and OA patients, RA and normal donors (NDs), or OA and ND. After regulatory network construction and regulatory impact factor analysis, we found that EGR1, NFE2L1, and NFYA were crucial TFs in the regulatory network of RA and NFYA, CBFB, CREB1, YY1 and PATZ1 were crucial TFs in the regulatory network of OA. These TFs could regulate the DCGs expression to involve RA and OA by promoting or inhibiting their expression. Altogether, our work may extend our understanding of disease mechanisms and may lead to an improved diagnosis. However, further experiments are still needed to confirm these observations.


Gene expression Osteoarthritis Regulatory network Rheumatoid arthritis 



The project was supported by the foundation of Pudong District (PW2011B-2 and PWRq2012-13).


All authors declare that there is no conflict of interest.


  1. 1.
    Delgado M, Abad C, Martinez C, Leceta J, Gomariz RP (2001) Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med 7(5):563–568. doi: 10.1038/8788787887 CrossRefPubMedGoogle Scholar
  2. 2.
    Silman AJ, Pearson JE (2002) Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 4(Suppl 3):S265–S272CrossRefPubMedGoogle Scholar
  3. 3.
    Prevalence of disabilities and associated health conditions among adults—United States, 1999 (2001). MMWR Morb Mortal Wkly Rep 50 (7):120–125Google Scholar
  4. 4.
    Wong JB, Ramey DR, Singh G (2001) Long-term morbidity, mortality, and economics of rheumatoid arthritis. Arthritis Rheum 44(12):2746–2749CrossRefPubMedGoogle Scholar
  5. 5.
    Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361. doi: 10.1038/nature01661 CrossRefPubMedGoogle Scholar
  6. 6.
    Muller-Ladner U, Pap T, Gay RE, Neidhart M, Gay S (2005) Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol 1(2):102–110, ncprheum004710.1038/ncprheum0047CrossRefPubMedGoogle Scholar
  7. 7.
    Majithia V, Geraci SA (2007) Rheumatoid arthritis: diagnosis and management. Am J Med 120(11):936–939, doi:S0002-9343(07)00361-010.1016/j.amjmed.2007.04.005CrossRefPubMedGoogle Scholar
  8. 8.
    Batliwalla FM, Baechler EC, Xiao X, Li W, Balasubramanian S, Khalili H, Damle A, Ortmann WA, Perrone A, Kantor AB, Gulko PS, Kern M, Furie R, Behrens TW, Gregersen PK (2005) Peripheral blood gene expression profiling in rheumatoid arthritis. Genes Immun 6(5):388–397, doi:636420910.1038/sj.gene.6364209CrossRefPubMedGoogle Scholar
  9. 9.
    Meugnier E, Coury F, Tebib J, Ferraro-Peyret C, Rome S, Bienvenu J, Vidal H, Sibilia J, Fabien N (2011) Gene expression profiling in peripheral blood cells of patients with rheumatoid arthritis in response to anti-TNF-alpha treatments. Physiol Genomics 43(7):365–371, physiolgenomics.00127.201010.1152/physiolgenomics.00127.2010CrossRefPubMedGoogle Scholar
  10. 10.
    Bovin LF, Rieneck K, Workman C, Nielsen H, Sorensen SF, Skjodt H, Florescu A, Brunak S, Bendtzen K (2004) Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor. Immunol Lett 93(2–3):217–226. doi: 10.1016/j.imlet.2004.03.018S0165247804000872 CrossRefPubMedGoogle Scholar
  11. 11.
    Neumann E, Kullmann F, Judex M, Justen HP, Wessinghage D, Gay S, Scholmerich J, Muller-Ladner U (2002) Identification of differentially expressed genes in rheumatoid arthritis by a combination of complementary DNA array and RNA arbitrarily primed-polymerase chain reaction. Arthritis Rheum 46(1):52–63. doi: 10.1002/1529-0131(200201)46:1<52::AID-ART10048>3.0.CO;2-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Aigner T, Fundel K, Saas J, Gebhard PM, Haag J, Weiss T, Zien A, Obermayr F, Zimmer R, Bartnik E (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54(11):3533–3544. doi: 10.1002/art.22174 CrossRefPubMedGoogle Scholar
  13. 13.
    Hopwood B, Tsykin A, Findlay DM, Fazzalari NL (2007) Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res Ther 9(5):R100, ar230110.1186/ar2301CrossRefPubMedGoogle Scholar
  14. 14.
    Ungethuem U, Haeupl T, Witt H, Koczan D, Krenn V, Huber H, von Helversen TM, Drungowski M, Seyfert C, Zacher J, Pruss A, Neidel J, Lehrach H, Thiesen HJ, Ruiz P, Blass S (2010) Molecular signatures and new candidates to target the pathogenesis of rheumatoid arthritis. Physiol Genomics 42A(4):267–282, physiolgenomics.00004.201010.1152/physiolgenomics.00004.2010CrossRefPubMedGoogle Scholar
  15. 15.
    Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255. doi: 10.1126/science.10874471087447 CrossRefPubMedGoogle Scholar
  16. 16.
    Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14(6):1085–1094. doi: 10.1101/gr.191090414/6/1085 CrossRefPubMedGoogle Scholar
  17. 17.
    Bergmann S, Ihmels J, Barkai N (2004) Similarities and differences in genome-wide expression data of six organisms. PLoS Biol 2(1):E9. doi: 10.1371/journal.pbio.0020009 CrossRefPubMedGoogle Scholar
  18. 18.
    Liu BH, Yu H, Tu K, Li C, Li YX, Li YY (2010) DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data. Bioinformatics 26(20):2637–2638, btq47110.1093/bioinformatics/btq471CrossRefPubMedGoogle Scholar
  19. 19.
    Yu H, Liu BH, Ye ZQ, Li C, Li YX, Li YY (2011) Link-based quantitative methods to identify differentially coexpressed genes and gene pairs. BMC Bioinforma 12:315, 1471-2105-12-31510.1186/1471-2105-12-315CrossRefGoogle Scholar
  20. 20.
    Team RDC (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing.
  21. 21.
    Benjamini YH, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300Google Scholar
  22. 22.
    Reverter A, Hudson NJ, Nagaraj SH, Perez-Enciso M, Dalrymple BP (2010) Regulatory impact factors: unraveling the transcriptional regulation of complex traits from expression data. Bioinformatics 26(7):896–904, btq05110.1093/bioinformatics/btq051CrossRefPubMedGoogle Scholar
  23. 23.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi: 10.1101/gr.123930313/11/2498 CrossRefPubMedGoogle Scholar
  24. 24.
    Rachlin J, Cohen DD, Cantor C, Kasif S (2006) Biological context networks: a mosaic view of the interactome. Mol Syst Biol 2:66, msb410010310.1038/msb4100103CrossRefPubMedGoogle Scholar
  25. 25.
    Wang L, Tang H, Thayanithy V, Subramanian S, Oberg AL, Cunningham JM, Cerhan JR, Steer CJ, Thibodeau SN (2009) Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer Res 69(24):9490–9497, 0008-5472.CAN-09-218310.1158/0008-5472.CAN-09-2183CrossRefPubMedGoogle Scholar
  26. 26.
    Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–263, nrg253810.1038/nrg2538CrossRefPubMedGoogle Scholar
  27. 27.
    Aicher WK, Dinkel A, Grimbacher B, Haas C, Seydlitz-Kurzbach EV, Peter HH, Eibel H (1999) Serum response elements activate and cAMP responsive elements inhibit expression of transcription factor Egr-1 in synovial fibroblasts of rheumatoid arthritis patients. Int Immunol 11(1):47–61CrossRefPubMedGoogle Scholar
  28. 28.
    Aicher WK, Heer AH, Trabandt A, Bridges SL Jr, Schroeder HW Jr, Stransky G, Gay RE, Eibel H, Peter HH, Siebenlist U et al (1994) Overexpression of zinc-finger transcription factor Z-225/Egr-1 in synoviocytes from rheumatoid arthritis patients. J Immunol 152(12):5940–5948PubMedGoogle Scholar
  29. 29.
    Alexander D, Judex M, Meyringer R, Weis-Klemm M, Gay S, Muller-Ladner U, Aicher WK (2002) Transcription factor Egr-1 activates collagen expression in immortalized fibroblasts or fibrosarcoma cells. Biol Chem 383(12):1845–1853. doi: 10.1515/BC.2002.208 CrossRefPubMedGoogle Scholar
  30. 30.
    Kim J, Xing W, Wergedal J, Chan JY, Mohan S (2010) Targeted disruption of nuclear factor erythroid-derived 2-like 1 in osteoblasts reduces bone size and bone formation in mice. Physiol Genomics 40(2):100–110, 00105.200910.1152/physiolgenomics.00105.2009CrossRefPubMedGoogle Scholar
  31. 31.
    Lee MS, Sun MT, Pang ST, Ueng SW, Chen SC, Hwang TL, Wang TH (2009) Evaluation of differentially expressed genes by shear stress in human osteoarthritic chondrocytes in vitro. Chang Gung Med J 32(1):42–50, 3201/320105PubMedGoogle Scholar
  32. 32.
    Singal DP, Ye M, Fleisig H, Buchanan WW, Qiu X (1996) Y box-binding trans-regulatory nuclear proteins and susceptibility to rheumatoid arthritis. Clin Exp Rheumatol 14(6):669–672PubMedGoogle Scholar
  33. 33.
    Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC, Meeusen S, Althage A, Cho CY, Wu X, Schultz PG (2012) A stem cell-based approach to cartilage repair. Science 336(6082):717–721. doi: 10.1126/science.1215157 CrossRefPubMedGoogle Scholar
  34. 34.
    Perez-Garcia S, Juarranz Y, Carrion M, Gutierrez-Canas I, Margioris A, Pablos JL, Tsatsanis C, Gomariz RP (2011) Mapping the CRF–urocortins system in human osteoarthritic and rheumatoid synovial fibroblasts: effect of vasoactive intestinal peptide. J Cell Physiol 226(12):3261–3269. doi: 10.1002/jcp.22687 CrossRefPubMedGoogle Scholar

Copyright information

© Clinical Rheumatology 2013

Authors and Affiliations

  1. 1.Department of Traumatology, East HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations