Clinical Rheumatology

, Volume 31, Issue 8, pp 1231–1238 | Cite as

Serum leptin levels are associated with the presence of syndesmophytes in male patients with ankylosing spondylitis

  • Ki-Jo Kim
  • Ji-Young Kim
  • Su-Jung Park
  • Hosung Yoon
  • Chong-Hyeon Yoon
  • Wan-Uk Kim
  • Chul-Soo Cho
Original Article


The aim of this study is to clarify the association between serum leptin levels and the presence of syndesmophytes in male patients with ankylosing spondylitis (AS). Seventy-two male patients with AS and 20 age-matched healthy male controls were included. Patients were stratified by the presence of syndesmophytes. Serum leptin levels were measured and adjusted for body mass index (BMI). In addition, bone-specific alkaline phosphatase (BALP), osteocalcin, and telopeptide of type I collagen were determined. Patients with syndesmophytes were associated with older age (p < 0.001), longer disease duration (p = 0.003), and higher BMI (p = 0.038). Serum leptin levels and leptin per BMI (leptin/BMI) ratio were not different between AS patients and healthy controls. However, serum leptin/BMI ratio was significantly higher in patients with syndesmophytes compared to those without (p = 0.010). In multivariate analysis, higher serum leptin/BMI ratio remained significantly associated with the presence of syndesmophytes (p = 0.029). Moreover, serum leptin/BMI ratio was positively correlated with serum BALP (γ = 0.279, p = 0.039). However, there was no significant association between serum leptin/BMI ratio and bone mineral density. Serum leptin levels are elevated in male AS patients with syndesmophytes and were found to be correlated with bone formation marker, suggesting a potential role of leptin in new bone formation in AS.


Ankylosing spondylitis Leptin Syndesmophyte 



This work was supported by grants from the Korea Healthcare technology R&D Project, the Ministry for Health, Welfare and Family Affairs (no. A092258), and the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (R33-2008-000-10064-0 and 2009-0080087).




  1. 1.
    Maksymowych WP (2010) Disease modification in ankylosing spondylitis. Nat Rev Rheumatol 6(2):75–81PubMedCrossRefGoogle Scholar
  2. 2.
    El Maghraoui A (2004) Osteoporosis and ankylosing spondylitis. Joint Bone Spine 71(4):291–295PubMedCrossRefGoogle Scholar
  3. 3.
    Donnelly S, Doyle DV, Denton A, Rolfe I, McCloskey EV et al (1994) Bone mineral density and vertebral compression fracture rates in ankylosing spondylitis. Ann Rheum Dis 53(2):117–121PubMedCrossRefGoogle Scholar
  4. 4.
    Karberg K, Zochling J, Sieper J, Felsenberg D, Braun J (2005) Bone loss is detected more frequently in patients with ankylosing spondylitis with syndesmophytes. J Rheumatol 32(7):1290–1298PubMedGoogle Scholar
  5. 5.
    Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2(1):35–43PubMedCrossRefGoogle Scholar
  6. 6.
    Kawai M, Devlin MJ, Rosen CJ (2009) Fat targets for skeletal health. Nat Rev Rheumatol 5(7):365–372PubMedCrossRefGoogle Scholar
  7. 7.
    Shi Y, Yadav VK, Suda N, Liu XS, Guo XE et al (2008) Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci USA 105(51):20529–20533PubMedCrossRefGoogle Scholar
  8. 8.
    Scheller EL, Song J, Dishowitz MI, Soki FN, Hankenson KD et al (2010) Leptin functions peripherally to regulate differentiation of mesenchymal progenitor cells. Stem Cells 28(6):1071–1080PubMedCrossRefGoogle Scholar
  9. 9.
    Gordeladze JO, Drevon CA, Syversen U, Reseland JE (2002) Leptin stimulates human osteobltic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteocltic signaling. J Cell Biochem 85(4):825–836PubMedCrossRefGoogle Scholar
  10. 10.
    Reseland JE, Gordeladze JO (2002) Role of leptin in bone growth: central player or peripheral supporter? FEBS Lett 528(1–3):40–42PubMedCrossRefGoogle Scholar
  11. 11.
    Thomas T, Burguera B (2002) Is leptin the link between fat and bone mass? J Bone Miner Res 17(9):1563–1569PubMedCrossRefGoogle Scholar
  12. 12.
    Kennedy A, Gettys TW, Watson P, Wallace P, Ganaway E et al (1997) The metabolic significance of leptin in humans: gender-bed differences in relationship to adiposity, insulin sensitivity, and energy expenditure. J Clin Endocrinol Metab 82(4):1293–1300PubMedCrossRefGoogle Scholar
  13. 13.
    van der Linden S, Valkenburg HA, Cats A (1984) Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 27(4):361–368PubMedCrossRefGoogle Scholar
  14. 14.
    Wanders AJ, Landewe RB, Spoorenberg A, Dougados M, van der Linden S et al (2004) What is the most appropriate radiologic scoring method for ankylosing spondylitis? A comparison of the available methods bed on the Outcome Meures in Rheumatology Clinical Trials filter. Arthritis Rheum 50(8):2622–2632PubMedCrossRefGoogle Scholar
  15. 15.
    World Health Organization (1994) sessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of WHO Study Group. World Health Organ Tech Rep Ser 843:1–129Google Scholar
  16. 16.
    Chen K, Li F, Li J, Cai H, Strom S et al (2006) Induction of leptin resistance through direct interaction of C-reactive protein with leptin. Nat Med 12(4):425–432PubMedCrossRefGoogle Scholar
  17. 17.
    Park MC, Lee SW, Choi ST, Park YB, Lee SK (2007) Serum leptin levels correlate with interleukin-6 levels and disee activity in patients with ankylosing spondylitis. Scand J Rheumatol 36(2):101–106PubMedCrossRefGoogle Scholar
  18. 18.
    Kirchgessner TG, Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Tumor necrosis factor-alpha contributes to obesity-related hyperleptinemia by regulating leptin release from adipocytes. J Clin Invest 100(11):2777–2782PubMedCrossRefGoogle Scholar
  19. 19.
    Zumbach MS, Boehme MW, Wahl P, Stremmel W, Ziegler R et al (1997) Tumor necrosis factor increases serum leptin levels in humans. J Clin Endocrinol Metab 82(12):4080–4082PubMedCrossRefGoogle Scholar
  20. 20.
    Gilgil E, Kacar C, Tuncer T, Butun B (2005) The association of syndesmophytes with vertebral bone mineral density in patients with ankylosing spondylitis. J Rheumatol 32(2):292–294PubMedGoogle Scholar
  21. 21.
    Toussirot E, Streit G, Nguyen NU, Dumoulin G, Le Huede G et al (2007) Adipose tissue, serum adipokines, and ghrelin in patients with ankylosing spondylitis. Metabolism 56(10):1383–1389PubMedCrossRefGoogle Scholar
  22. 22.
    Park MC, Chung SJ, Park YB, Lee SK (2009) Pro-inflammatory effect of leptin on peripheral blood mononuclear cells of patients with ankylosing spondylitis. Joint Bone Spine 76(2):170–175PubMedCrossRefGoogle Scholar
  23. 23.
    Derdemezis CS, Filippatos TD, Voulgari PV, Tselepis AD, Drosos AA et al (2010) Leptin and adiponectin levels in patients with ankylosing spondylitis. The effect of infliximab treatment. Clin Exp Rheumatol 28(6):880–883PubMedGoogle Scholar
  24. 24.
    Lilja M, Rolandsson O, Shaw JE, Pauvaday V, Cameron AJ et al (2010) Higher leptin levels in Asian Indians than Creoles and Europids: a potential explanation for increased metabolic risk. Int J Obes (Lond) 34(5):878–885CrossRefGoogle Scholar
  25. 25.
    van Tubergen A, Ramiro S, van der Heijde D, Dougados M, Mielants H et al (2011) Development of new syndesmophytes and bridges in ankylosing spondylitis and their predictors: a longitudinal study. Ann Rheum Dis 71:518–23PubMedCrossRefGoogle Scholar
  26. 26.
    Maksymowych WP, Chiowchanwisawakit P, Clare T, Pedersen SJ, Ostergaard M et al (2009) Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between inflammation and new bone formation. Arthritis Rheum 60(1):93–102PubMedCrossRefGoogle Scholar
  27. 27.
    Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N et al (2004) Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA 101(9):3258–3263PubMedCrossRefGoogle Scholar
  28. 28.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone ms. Cell 100(2):197–207PubMedCrossRefGoogle Scholar
  29. 29.
    Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG (2000) Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 92(1–3):73–78PubMedCrossRefGoogle Scholar
  30. 30.
    Martin A, David V, Malaval L, Lafage-Proust MH, Vico L et al (2007) Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway. Endocrinology 148(7):3419–3425PubMedCrossRefGoogle Scholar
  31. 31.
    Thomas T, Gori F, Khosla S, Jensen MD, Burguera B et al (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140(4):1630–1638PubMedCrossRefGoogle Scholar
  32. 32.
    Reseland JE, Syversen U, Bakke I, Qvigstad G, Eide LG et al (2001) Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J Bone Miner Res 16(8):1426–1433PubMedCrossRefGoogle Scholar
  33. 33.
    Bajoria R, Sooranna SR, Chatterjee R (2007) Leptin and bone turnover in monochorionic twins complicated by twin-twin transfusion syndrome. Osteoporos Int 18(2):193–200PubMedCrossRefGoogle Scholar
  34. 34.
    Morberg CM, Tetens I, Black E, Toubro S, Soerensen TI et al (2003) Leptin and bone mineral density: a cross-sectional study in obese and nonobese men. J Clin Endocrinol Metab 88(12):5795–5800PubMedCrossRefGoogle Scholar
  35. 35.
    Scariano JK, Garry PJ, Montoya GD, Chandani AK, Wilson JM et al (2003) Serum leptin levels, bone mineral density and osteoblast alkaline phosphatase activity in elderly men and women. Mech Ageing Dev 124(3):281–286PubMedCrossRefGoogle Scholar
  36. 36.
    Ikeda Y, Nakajima A, Aiba A, Koda M, Okawa A et al (2011) Association between serum leptin and bone metabolic markers, and the development of heterotopic ossification of the spinal ligament in female patients with ossification of the posterior longitudinal ligament. Eur Spine J 20(9):1450–1458PubMedCrossRefGoogle Scholar
  37. 37.
    Kaplan FS, Glaser DL, Hebela N, Shore EM (2004) Heterotopic ossification. J Am Acad Orthop Surg 12(2):116–125PubMedGoogle Scholar
  38. 38.
    Chiowchanwisawakit P, Lambert RG, Conner-Spady B, Maksymowych WP (2011) Focal fat lesions at vertebral corners on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis. Arthritis Rheum 63(8):2215–2225PubMedCrossRefGoogle Scholar
  39. 39.
    Bennett AN, Rehman A, Hensor EM, Marzo-Ortega H, Emery P et al (2010) The fatty Romanus lesion: a non-inflammatory spinal MRI lesion specific for axial spondyloarthropathy. Ann Rheum Dis 69(5):891–894PubMedCrossRefGoogle Scholar
  40. 40.
    Mutabaruka MS, Aoulad Aissa M, Delalandre A, Lavigne M, Lajeunesse D (2010) Local leptin production in osterthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression. Arthritis Res Ther 12(1):R20PubMedCrossRefGoogle Scholar
  41. 41.
    Komaki Y, Sugiura H, Koarai A, Tomaki M, Ogawa H et al (2005) Cytokine-mediated xanthine oxidase upregulation in chronic obstructive pulmonary disease's airways. Pulm armacol Ther 18(4):297–302CrossRefGoogle Scholar
  42. 42.
    Appel H, Maier R, Loddenkemper C, Kayser R, Meier O et al (2010) Immunohistochemical analysis of osteoblasts in zygapophyseal joints of patients with ankylosing spondylitis reveal repair mechanisms similar to osteoarthritis. J Rheumatol 37(4):823–828PubMedCrossRefGoogle Scholar
  43. 43.
    Dumond H, Presle N, Terlain B, Mainard D, Loeuille D et al (2003) Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum 48(11):3118–3129PubMedCrossRefGoogle Scholar
  44. 44.
    Donahue RP, Zimmet P, Bean JA, Decourten M, DeCarlo Donahue RA et al (1999) Cigarette smoking, alcohol use, and physical activity in relation to serum leptin levels in a multiethnic population: The Miami Community Health Study. Ann Epidemiol 9(2):108–113PubMedCrossRefGoogle Scholar
  45. 45.
    Kelesidis T, Kelesidis I, Chou S, Mantzoros CS (2010) Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med 152(2):93–100PubMedGoogle Scholar

Copyright information

© Clinical Rheumatology 2012

Authors and Affiliations

  • Ki-Jo Kim
    • 1
  • Ji-Young Kim
    • 1
  • Su-Jung Park
    • 1
  • Hosung Yoon
    • 1
  • Chong-Hyeon Yoon
    • 1
  • Wan-Uk Kim
    • 1
  • Chul-Soo Cho
    • 1
    • 2
  1. 1.Division of Rheumatology, Department of Internal Medicine, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
  2. 2.Division of Rheumatology, Department of Internal Medicine, Yeouido St. Mary’s HospitalThe Catholic University of KoreaSeoulRepublic of Korea

Personalised recommendations