Clinical Rheumatology

, Volume 27, Issue 4, pp 413–419 | Cite as

The role of mannose-binding lectin in systemic lupus erythematosus

  • Odirlei André Monticielo
  • Tamara Mucenic
  • Ricardo Machado Xavier
  • João Carlos Tavares Brenol
  • José Artur Bogo Chies
Review Article

Abstract

Susceptibility to systemic lupus erythematosus (SLE) is associated with genetic, hormonal, immunological, and environmental factors. Many genes have been related with the appearance of SLE, including several loci that code different complement components and their receptors. Some genetic deficiencies of complement molecules are strongly associated with SLE, probably because these deficiencies could cause decreased clearance of apoptotic cell material. As a consequence of the apoptotic material accumulation, high levels of autoantigens can be presented inappropriately to the immune system in an inflammatory context, resulting in an imbalance on the mechanisms of immunological tolerance, immune system activation, and autoantibody production. Recent studies proposed a role to the mannose-binding lectin (MBL) in the SLE physiopathogenesis. This protein activates the complement system, and the presence of several polymorphisms at the promoter and coding regions of the MBL-2 gene determines alterations at the plasma levels of MBL. Some of these polymorphisms have been associated with SLE susceptibility, as well as with clinical and laboratory typical features of this disease, cardiovascular events, and infections. Besides, it has been described that the presence of anti-MBL autoantibodies in sera of SLE patients can influence MBL plasma levels and its functional activity.

Keywords

Complement Genetics Immunology Mannose-binding lectin Risk factors Systemic lupus erythematosus 

References

  1. 1.
    Walport MJ (1993) The Roche Rheumatology Prize Lecture. Complement deficiency and disease. Br J Rheumatol 32(4):269–273PubMedCrossRefGoogle Scholar
  2. 2.
    Block SR et al (1975) Proceedings: twin studies in systemic lupus erythematosus (SLE). Arthritis Rheum 18(3):285PubMedGoogle Scholar
  3. 3.
    Deapen D et al (1992) A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 35(3):311–318PubMedCrossRefGoogle Scholar
  4. 4.
    Arnett FC et al (1984) Systemic lupus erythematosus: current state of the genetic hypothesis. Semin Arthritis Rheum 14(1):24–35PubMedCrossRefGoogle Scholar
  5. 5.
    Murashima A et al (2004) Long term prognosis of children born to lupus patients. Ann Rheum Dis 63(1):50–53PubMedCrossRefGoogle Scholar
  6. 6.
    Croker JA, Kimberly RP (2005) Genetics of susceptibility and severity in systemic lupus erythematosus. Curr Opin Rheumatol 17(5):529–537PubMedCrossRefGoogle Scholar
  7. 7.
    Fraser PA et al (2003) Glutathione S-transferase M null homozygosity and risk of systemic lupus erythematosus associated with sun exposure: a possible gene–environment interaction for autoimmunity. J Rheumatol 30(2):276–282PubMedGoogle Scholar
  8. 8.
    Morel J et al (2003) Polymorphism of HLA-DMA and DMB alleles in patients with systemic lupus erythematosus. J Rheumatol 30(7):1485–1490PubMedGoogle Scholar
  9. 9.
    Tsao BP (2004) Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 16(5):513–521PubMedCrossRefGoogle Scholar
  10. 10.
    Fairhurst AM, Wandstrat AE, Wakeland EK (2006) Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv Immunol 92:1–69PubMedCrossRefGoogle Scholar
  11. 11.
    Theofilopoulos AN (1995) The basis of autoimmunity. Part II. Genetic predisposition. Immunol Today 16(3):150–159PubMedCrossRefGoogle Scholar
  12. 12.
    Pugh-Bernard AE, Cambier JC (2006) B cell receptor signaling in human systemic lupus erythematosus. Curr Opin Rheumatol 18(5):451–455PubMedCrossRefGoogle Scholar
  13. 13.
    Tsokos GC et al (2000) Immune cell signaling in lupus. Curr Opin Rheumatol 12(5):355–363PubMedCrossRefGoogle Scholar
  14. 14.
    Dommett RM, Klein N, Turner MW (2006) Mannose-binding lectin in innate immunity: past, present and future. Tissue Antigens 68(3):193–209PubMedCrossRefGoogle Scholar
  15. 15.
    Madsen HO et al (1994) A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics 40(1):37–44PubMedCrossRefGoogle Scholar
  16. 16.
    Sastry K et al (1989) The human mannose-binding protein gene. Exon structure reveals its evolutionary relationship to a human pulmonary surfactant gene and localization to chromosome 10. J Exp Med 170(4):1175–1189PubMedCrossRefGoogle Scholar
  17. 17.
    Taylor ME et al (1989) Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein. Biochem J 262(3):763–771PubMedGoogle Scholar
  18. 18.
    Garred P et al (2003) Mannose-binding lectin deficiency—revisited. Mol Immunol 40(2–4):73–84PubMedCrossRefGoogle Scholar
  19. 19.
    Lipscombe RJ et al (1992) High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum Mol Genet 1992 1(9):709–715CrossRefGoogle Scholar
  20. 20.
    Sumiya M et al (1991) Molecular basis of opsonic defect in immunodeficient children. Lancet 337(8757):1569–1570PubMedCrossRefGoogle Scholar
  21. 21.
    Lipscombe RJ et al (1996) Mutations in the human mannose-binding protein gene: frequencies in several population groups. Eur J Hum Genet 4(1):13–19PubMedGoogle Scholar
  22. 22.
    Madsen HO et al (1995) Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol 155(6):3013–3020PubMedGoogle Scholar
  23. 23.
    Madsen HO et al (1998) Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J Immunol 161(6):3169–3175PubMedGoogle Scholar
  24. 24.
    Neonato MG et al (1999) Genetic polymorphism of the mannose-binding protein gene in children with sickle cell disease: identification of three new variant alleles and relationship to infections. Eur J Hum Genet 7(6):679–686PubMedCrossRefGoogle Scholar
  25. 25.
    Davies EJ et al (1995) Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum 38(1):110–114PubMedCrossRefGoogle Scholar
  26. 26.
    Davies EJ et al (1998) Mannose-binding protein gene polymorphism in South African systemic lupus erythematosus. Br J Rheumatol 37(4):465–466PubMedCrossRefGoogle Scholar
  27. 27.
    Lau YL et al (1996) Mannose-binding protein in Chinese patients with systemic lupus erythematosus. Arthritis Rheum 39(4):706–708PubMedCrossRefGoogle Scholar
  28. 28.
    Garcia-Laorden MI et al (2003) Mannose binding lectin polymorphisms as a disease-modulating factor in women with systemic lupus erythematosus from Canary Islands, Spain. J Rheumatol 30(4):740–746PubMedGoogle Scholar
  29. 29.
    Garred P et al (1999) Mannose-binding lectin polymorphisms and susceptibility to infection in systemic lupus erythematosus. Arthritis Rheum 42(10):2145–2152PubMedCrossRefGoogle Scholar
  30. 30.
    Horiuchi T et al (2000) Mannose binding lectin (MBL) gene mutation is not a risk factor for systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) in Japanese. Genes Immun 1(7):464–466PubMedCrossRefGoogle Scholar
  31. 31.
    Sullivan KE et al (1996) Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis Rheum 39(12):2046–2051PubMedCrossRefGoogle Scholar
  32. 32.
    Sullivan KE et al (2003) Analysis of polymorphisms affecting immune complex handling in systemic lupus erythematosus. Rheumatology (Oxford) 42(3):446–452CrossRefGoogle Scholar
  33. 33.
    Villarreal J et al (2001) Mannose binding lectin and FcgammaRIIa (CD32) polymorphism in Spanish systemic lupus erythematosus patients. Rheumatology (Oxford) 40(9):1009–1012CrossRefGoogle Scholar
  34. 34.
    Carthy D et al (1997) Mannose-binding lectin gene polymorphism in Greek systemic lupus erythematosus patients. Br J Rheumatol 36(11):1238–1239PubMedCrossRefGoogle Scholar
  35. 35.
    Huang YF et al (2003) Increased frequency of the mannose-binding lectin LX haplotype in Chinese systemic lupus erythematosus patients. Eur J Immunogenet 30(2):121–124PubMedCrossRefGoogle Scholar
  36. 36.
    Ip WK et al (1998) Association of systemic lupus erythematosus with promoter polymorphisms of the mannose-binding lectin gene. Arthritis Rheum 41(9):1663–1668PubMedGoogle Scholar
  37. 37.
    Tsutsumi A et al (2001) Mannose-binding lectin gene: polymorphisms in Japanese patients with systemic lupus erythematosus, rheumatoid arthritis and Sjogren’s syndrome. Genes Immun 2(2):99–104PubMedCrossRefGoogle Scholar
  38. 38.
    Takahashi R et al (2005) Association of mannose binding lectin (MBL) gene polymorphism and serum MBL concentration with characteristics and progression of systemic lupus erythematosus. Ann Rheum Dis 64(2):311–314PubMedCrossRefGoogle Scholar
  39. 39.
    Navarra SV et al (2007) Increased frequency of mannose-binding lectin promoter LX haplotype among Filipinos with systemic lupus erythematosus. Lupus 16(2):147–148PubMedCrossRefGoogle Scholar
  40. 40.
    Chies JA (2007) Letter to the editor: on the haplotypic frequencies of the MBL2 gene among human populations. Lupus 16(10):838PubMedCrossRefGoogle Scholar
  41. 41.
    Lee YH et al (2005) The mannose-binding lectin gene polymorphisms and systemic lupus erythematosus: two case–control studies and a meta-analysis. Arthritis Rheum 52(12):3966–3974PubMedCrossRefGoogle Scholar
  42. 42.
    Font J et al (2006) Association of mannose-binding lectin gene polymorphisms with antiphospholipid syndrome, cardiovascular disease and chronic damage in patients with systemic lupus erythematosus. Rheumatology 46:76–80PubMedCrossRefGoogle Scholar
  43. 43.
    Ohlenschlaeger T et al (2004) Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. N Engl J Med 351(3):260–267PubMedCrossRefGoogle Scholar
  44. 44.
    Calvo-Alen J et al (2006) Systemic lupus erythematosus in a multiethnic US cohort: XXXIV. Deficient mannose-binding lectin exon 1 polymorphisms are associated with cerebrovascular but not with other arterial thrombotic events. Arthritis Rheum 54(6):1940–1945PubMedCrossRefGoogle Scholar
  45. 45.
    Bertoli AM et al (2006) Systemic lupus erythematosus in a multiethnic US cohort: XXXVI. Influence of mannose-binding lectin exon 1 polymorphisms in disease manifestations, course, and outcome. Arthritis Rheum 54(5):1703–1704PubMedCrossRefGoogle Scholar
  46. 46.
    Piao W et al (2007) Mannose-binding lectin is a disease-modifying factor in North American patients with systemic lupus erythematosus. J Rheumatol 34(7):1506–1513PubMedGoogle Scholar
  47. 47.
    Mok MY et al (2007) Mannose-binding lectin and susceptibility to infection in Chinese patients with systemic lupus erythematosus. J Rheumatol 34(6):1270–1276PubMedGoogle Scholar
  48. 48.
    Bultink IE et al (2006) Deficiency of functional mannose-binding lectin is not associated with infections in patients with systemic lupus erythematosus. Arthritis Res Ther 8(6):R183PubMedCrossRefGoogle Scholar
  49. 49.
    Seelen MA et al (2003) Autoantibodies against mannose-binding lectin in systemic lupus erythematosus. Clin Exp Immunol 134(2):335–343PubMedCrossRefGoogle Scholar
  50. 50.
    Takahashi R et al (2004) Anti-mannose binding lectin antibodies in sera of Japanese patients with systemic lupus erythematosus. Clin Exp Immunol 136(3):585–590PubMedCrossRefGoogle Scholar
  51. 51.
    Mok MY et al (2004) Antibodies to mannose binding lectin in patients with systemic lupus erythematosus. Lupus 13(7):522–528PubMedCrossRefGoogle Scholar
  52. 52.
    Shoenfeld Y et al (2007) Autoantibodies against protective molecules-C1q, C-reactive protein, serum amyloid P, mannose-binding lectin, and apolipoprotein A1: prevalence in systemic lupus erythematosus. Ann N Y Acad Sci 1108:227–239PubMedCrossRefGoogle Scholar

Copyright information

© Clinical Rheumatology 2008

Authors and Affiliations

  • Odirlei André Monticielo
    • 1
    • 3
  • Tamara Mucenic
    • 1
  • Ricardo Machado Xavier
    • 1
  • João Carlos Tavares Brenol
    • 1
  • José Artur Bogo Chies
    • 2
  1. 1.Division of Rheumatology, Department of Internal MedicineHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Department of GeneticsUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Serviço de Reumatologia do Hospital de Clínicas de Porto Alegre—HCPAPorto AlegreBrazil

Personalised recommendations