Advertisement

Determination of rockfall design blocks in Upper Triassic limestones and dolomites (Dachstein Formation, Northern Calcareous Alps)

  • Hans Jörg LaimerEmail author
Original Paper
  • 9 Downloads

Abstract

Design block size is of vital importance for rockfall countermeasure design. According to the Austrian normative document ONR 24810, the design block is specified as fractile (V95-V98) of the block size distribution depending on rockfall frequency. For rock formations, which form very large rockfall blocks (> 10 m3), the use of fractiles V95V98 appears too high with regard to economically justifiable protective measures. The paper deals with the determination of design blocks for the Dachstein Formation on the basis of data from three Austrian test regions. The formation’s bedded limestone represents a key rock of the eastern part of the Northern Calcareous Alps and is very common along some major transport routes. A range of design blocks is derived from a synopsis of block size distributions, magnitude-frequency relations, and considerations about the rockfall barriers’ service life. In the process, the knowledge of the return period of the determinated design block is considered more important than the overall rockfall frequency. Analyzing available rockfall event data and block size distributions, it is possible to identify a return period of 21–26 years for a rockfall event ≥ 1 m3/1000 m route section. Thus, such events are rare. Events that affect the V97V100 fractiles of the block size distribution are even rarer; they yield very large design block volumes, which show return periods > 100 years. For the bedded Dachstein limestone of the test areas, the application of the fractiles V95V96 (0.15–2.25 m3) is useful for adapting the return period of the design block to the working life of the rock fall barrier (25–50 years).

Keywords

Dachstein Formation Rockfall design blocks Block size distribution Magnitude-frequency relations Technical code for rock fall protection 

Notes

Acknowledgements

The author gratefully acknowledges the permission to use rockfall event data of the Austrian Federal Railways. Thanks must also go to Renate Klima for layouting the figures and Martin Müllegger for the contribution of a further RBSD.

References

  1. Agliardi F, Crosta GB (2014) Supporting rockfall countermeasure design in difficult conditions. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a saver environment, Vol 3: targeted landslides. Springer, Zürich, pp 71–76.  https://doi.org/10.1007/978-3-319-04996-0_13 CrossRefGoogle Scholar
  2. Austrian Society for Geomechanics (2014) Empfehlung für das Schutzziel bei gravitativen Naturgefahren in Österreich. ÖGG, SalzburgGoogle Scholar
  3. Bavarian State Ministry of the Environment (2013) Georisiken im Klimawandel. Gefahrenhinweiskarte Alpen und Alpenvorland. Landkreis Berchtesgadener Land. Bayerisches Landesamt für Umwelt, AugsburgGoogle Scholar
  4. Budetta P, De Luca C, Nappi M (2016) Quantitative rockfall risk assessment for an important road by means of the rockfall risk management (RO.MA.) method. Bull Eng Geol Environ 75:1377–1397.  https://doi.org/10.1007/s10064-015-0798-6 CrossRefGoogle Scholar
  5. Corominas J, Mavrouli O, Ruiz-Carulla R (2018) Magnitude and frequency relations: are there geological constraints to the rockfall size? Landslides 15(5):829–845.  https://doi.org/10.1007/s10346-017-0910-z CrossRefGoogle Scholar
  6. De Biagi V, Napoli ML, Barbero M, Peila D (2017) Estimation of the return period of rockfall blocks according to their size. Nat Hazards Earth Syst Sci 17:103–113.  https://doi.org/10.5194/nhess-17-103-2017 CrossRefGoogle Scholar
  7. EN (1990) (2002) Eurocode: Grundlagen der Tragwerksplanung. Beuth, BerlinGoogle Scholar
  8. EOTA (2018) EAD 340059-00-0106 Falling Rock Protection Kits. EOTA, BrusselsGoogle Scholar
  9. Fischer AG (1964) The Lofer Cyclothems of the Alpine Triassic. In: Merriam DF (ed) Symposium on cyclic sedimentation. Kansas Geol Surv Bull 169:107–149Google Scholar
  10. Guerin A, Rossetti JP, Hantz D, Jaboyedoff M (2013) Estimating rock fall frequency in a limestone cliff using LIDAR measurements. In: Proceedings of the first international conference on landslides’ risk, Tabarka, 14-15 March, pp 293-301Google Scholar
  11. Holub M, Fuchs S (2009) Mitigating mountain hazards in Austria - legislation, risk transfer, and awareness building. Nat. Hazards Earth Syst. Sci. 9:523–537CrossRefGoogle Scholar
  12. Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can Geotech J 36:224–238CrossRefGoogle Scholar
  13. Kienholz H, Perret S, Schmid F (2008) Dokumentation von Naturereignissen. In: PLANALP (ed). Alpensignale 4. Alpenkonvention, Innsbruck/BernGoogle Scholar
  14. Krenmayr HG, Schnabel W (2006) Geologische Karte von Oberösterreich 1:200 000. Geologische Bundesanstalt, ViennaGoogle Scholar
  15. Laimer HJ, Müllegger M (2017): Klassifizierung von Felsböschungen an Bahnstrecken. Eisenbahn-Ingenieur-Kompendium 01/2017:51-68Google Scholar
  16. ON (2017) ONR 24810: 2017-02-15. Technical protection against rockfall - terms and definitions, effects of actions, design, monitoring and maintenance. Austrian Standards International, Vienna, p 113Google Scholar
  17. Palmström A (2000) Block size and block size distribution. Workshop on Reliability of classification systems at GeoEng2000, Melbourne, 18-24 NovemberGoogle Scholar
  18. Pestal G, Hejl E (2005) Geologische Karte von Salzburg 1:200 000. Geologische Bundesanstalt, ViennaGoogle Scholar
  19. Poisel R, Hofmann R, Mölk M (2012) Investment decisions based on risk assessment. Geomech Tunnelling 5(5):597–604CrossRefGoogle Scholar
  20. Poscher G (1993) Geochemisch-technische Eigenschaften von Karbonatgesteinen der Nördlichen Kalkalpen Oberösterreichs. Archiv für Lagerstättenforschung der Geologischen Bundesanstalt 16:83–102Google Scholar
  21. Proske H, Bauer C (2013) MoNOE – Modellierung der Sturzprozesse. Berichte der Geologischen Bundesanstalt 100:87–92Google Scholar
  22. Ruiz-Carulla R, Corominas J, Mavrouli O (2016) Comparison of block size distribution in rockfalls. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and engineered slopes. Experience, theory and practice. Proceedings of the 12th international symposium on landslides. 12-19 June, CRC Press/Balkema, Leiden, Napoli, pp 1767–1774.  https://doi.org/10.1201/b21520-220 CrossRefGoogle Scholar
  23. Sander B (1936) Beiträge zur Kenntnis der Anlagerungsgefüge (Rhythmische Kalke und Dolomite aus Tirol). Tschermaks mineral. petrogr. Mitt. 46:27–209Google Scholar
  24. Sausgruber JT, Mölk M, Schreiner I (2012) Evacuation or protection? Risk analysis as a tool for decision making in the case of a residential building endangered by rockfall. Geomech Tunnelling 5(4):355–367CrossRefGoogle Scholar
  25. Schnabel W (2002) Geologische Karte von Niederösterreich 1:200 000. Geologische Bundesanstalt, ViennaGoogle Scholar
  26. Selby MJ (1993) Hillslope Materials and Processes. Oxford University Press, OxfordGoogle Scholar
  27. Vagnon F, Harrison JP, Ferrero AM, Umili G (2018) Reliability based design for rock fall barriers. In: Litvinenko V (ed) Geomechanics and geodynamics of rock masses, Proceedings of the EUROCK2018, vol 2. Taylor & Francis Group, London, pp 1543–1548Google Scholar
  28. Vijayakumar S, Thamer Y, Curran JH (2018) On the effect of rock size and shape in rockfall analyses. https://www.rocscience.com/documents/pdfs/library/Effect-of-Rock-Size-on-Rocfall-Analysis.pdf Accessed 31 August 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Austrian Federal RailwaysÖBB Infrastruktur AGSalzburgAustria

Personalised recommendations