Advertisement

Spatiotemporal evolution of the El Biar landslide (Algiers): new field observation data constrained by ground-penetrating radar investigations

  • Nassim HallalEmail author
  • Abdelkrim Yelles Chaouche
  • Lamine Hamai
  • Atmane Lamali
  • Laurent Dubois
  • Yahia Mohammedi
  • Mouloud Hamidatou
  • Leila Djadia
  • Abdeslam Abtout
Original Paper
  • 23 Downloads

Abstract

A better understanding of the spatiotemporal evolution of landslides in urban zones is a key factor in assessing the risk of future slides within these areas. The El Biar landslide, located around the center of Algiers city, is one of the most important landslides in the region. It occurs mostly within a high strategic zone between schools, embassies and security buildings, thus causing a real risk for the population since it covers an area of 40 ha. The detection of various landslide-breaking surfaces leads to a better understanding of the mechanism of the spatiotemporal evolution of ground movement. In this work, we have combined two methods in order to provide strong evidence of its spatiotemporal evolution. The first method is based on field investigations to map old scarps related to the activity of the landslide. To better constrain our field investigations, most recent field observations were complemented by a second geophysical method using ground-penetrating radar with two different antennae which propagate under the two frequencies of 30 MHz and 100 MHz. As a result, we have reviewed this sliding area in detail and presented a new map of the whole affected zone. We have also delimited the affected zone by drawing a new map of the landslide. Combining field observations and the geophysical survey, we have highlighted the main discontinuity surfaces that lead us to suggest plausible realistic scenarios concerning the landslide’s evolution.

Keywords

El Biar landslide Mapping GPR Spatiotemporal evolution 

Notes

Acknowledgments

This research was supported by the CRAAG research center. We would like to thank the two anonymous reviewers for their thoughtful comments and useful suggestions.

References

  1. Agard M (1948) Les glissements et éboulements des quartiers Saint-Raphaël et Telemly à Alger. Ann Ponts Chaussées 465–480Google Scholar
  2. Aymé (1964) Cartes géologiques de Chéraga et d’Alger. Bull Serv Cart Géol Alg, scale: 1/50 000Google Scholar
  3. Azimi D (1996) Quelques aspects de la prévision des mouvements de terrains. Rev Fr Géotech 76:63–75CrossRefGoogle Scholar
  4. Bogoslovsky VA, Ogilvy AA (1977) Application of geophysical methods for the investigation of landslides. Geophysics 42:562–571CrossRefGoogle Scholar
  5. Borecka A, Herzig J, Durjasz-Rybacka M (2015) Ground penetrating radar investigations of landslides: a case study in a landslide in Radziszów. Stud Geotech Mech 37:11–18CrossRefGoogle Scholar
  6. Bougdal R (2007) Urbanisation et mouvements de versants dans le contexte géologique et géotechnique des bassins néogènes d’Algérie du Nord. Thèse doctorat. USTHB. AlgeriaGoogle Scholar
  7. Bougdal R, Larriere A, Pincent B, Panet M, Bentabet A (2013) Les glissements de terrains du quartier Bélouizdad, Constantine. Algérie Bull Eng Geol Env.  https://doi.org/10.1007/s10064-013-0465-8
  8. Bouhadad Y, Benhamouche A, Bourenane H, Ait Ouali A, Chikh M, Guessoum N (2010) The Laalam (Algeria) damage landslide triggered by a moderate earthquake (mw = 5.2). Nat Hazards.  https://doi.org/10.1007/s11069-009-9466-0
  9. Boullé P, Vrolijks L, Palm E (1997) Vulnerability reduction for sustainable urban development. J Conting Crisis Manag 5:179–188CrossRefGoogle Scholar
  10. Bournane H, Bouhadad Y, Guettouche M-S, Braham M (2015) GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ.  https://doi.org/10.1007/s10064-014-0616-6
  11. Bouzid R (1985) Contribution à l’étude des glissements de terrain, cas du glissement d’El Biar. Thèse de Doctorat de 3ème cycle. Ecole Nationale Polytechnique, AlgeriaGoogle Scholar
  12. Cheikh Lounis G (2011) Analyse et cartographie des risques naturels dans l’algérois. Thèse doctorat. USTHB. AlgeriaGoogle Scholar
  13. Crozier M. J, Glade T (2012) Landslide hazard and risk: issues, concepts, and approach. In: Glade, T., Anderson, M., Crozier, M.J. (Eds.), Landslide Hazard and Risk. Wiley, Chichester, UK, pp. 1–40Google Scholar
  14. Dervieux F (1948) Problèmes particuliers de mécanique des sols en Algérie. I.T.B.T.P. Sols Fond 3:51–58Google Scholar
  15. Djerbal L, Melbouci B (2012) Le glissement de terrain d’Aïn-El- Hammam : causes et évolution. Bull Eng Geol Environ 71(3):587–597CrossRefGoogle Scholar
  16. Drouhin R, Gauthier H, Dervieux H (1948) Stabilité et déformation du sol. Travaux, pp. 327–332Google Scholar
  17. Glangeaud L (1932) Etude géologique de la région littorale de la province d’Alger. Thèse Doct. Sci., Paris.Google Scholar
  18. Glangeaud L, Aymé A, Matauer M (1952) Histoire géologique de la province d’Alger, XIX Cong. Géol. Inter., Mono gr. Région Algérie, 1er série, n°25Google Scholar
  19. Guirous L, Djerbal L, Alimrina N, Melbouci B, Bahar R (2013) Caractérisation des glissements de terrain de la région de Tizi-Ouzou (Algérie). First International Conference on Landslides Risk, Tabarka, Tunisie, 14–16 mars, pp 117–127Google Scholar
  20. Guirous L, Dubois L, Melbouci B (2014) Contribution à l’étude du mouvement de terrain de la ville de Tigzirt (Algérie). Bull Eng Geol Environ.  https://doi.org/10.1007/s10064-014-0624-6
  21. Hack R (2000) Geophysics for slope stability. Surv Geophys 21:423–448CrossRefGoogle Scholar
  22. Hallal N, Dubois L, Bougdal R, Djouder F (2017) Instabilités gravitaires dans la région de Béjaïa (Algérie): Inventaire et appréciation de l’importance relative des différents paramètres conduisant au déclenchement, au maintien ou à l’activation des instabilités. Bull Eng Geol Environ.  https://doi.org/10.1007/s10064-017-1050-3
  23. Harbi A, Maouche S, Ayadi A, Benouar D, Panza G-F, Benhallou H (2004) Seismicity and tectonic structures in the site of Algiers and its surroundings: a step towards microzonation. Pure Appl Geophys 161:949–967CrossRefGoogle Scholar
  24. Huang Y, Lingkan Y, Chenwen G (2013) Distribution law of landslides triggered by earthquake based on cellular automata. J SouthWest JiaoTong Univ.  https://doi.org/10.3969/j.issn.0258-2724.2013.04.004
  25. Irving JD, Knight RJ (2003) Removal of wavelet dispersion from ground-penetrating radar data. Geophysics 68:960–970.  https://doi.org/10.1190/1.1581068 CrossRefGoogle Scholar
  26. Koukouvelas A, Litoseliti K, Nikolakopoulos V, Zygouri (2015) Earthquake triggered rock falls and their role in the development of a rock slope: the case of Skolis Mountain, Greece. Eng Geol 191(29):71–85CrossRefGoogle Scholar
  27. Laribi A, Walstra J, Ougrine M, Seridi A, Dechemi N (2015) Use of digital photogrammetry for the study of unstable slopes in urban areas: Case study of the El Biar landslide, AlgiersGoogle Scholar
  28. Maouche S (2010) Tectonique active et géodynamique le long de l’Atlas Tellien: Etude des soulèvements côtiers., USTHB, AlgeriaGoogle Scholar
  29. Maouche S, Meghraoui M, Morhange C et al (2011) Active coastal thrusting and folding, and uplift rate of the Sahel anticline and Zemmouri earthquake area (tell atlas, Algeria). Tectonophysics 509:69–80.  https://doi.org/10.1016/j.tecto.2011.06.003 CrossRefGoogle Scholar
  30. Mansour MF, Morgenstern NR, Martin CD (2011) Expected damage from displacement of slow-moving slides. Landslides 8:117–131CrossRefGoogle Scholar
  31. Mc Cann DM, Forster A (1990) Reconnaissance geophysical methods in landslide investigations. Eng Geol 29:59–78CrossRefGoogle Scholar
  32. Meghraoui M, Maouche S, Chemaa B, Cakir Z, Aoudia A, Harbi A, Alasset PJ, Ayadi A, Bouhadad Y, Benhamouda F (2004) Coastal uplift and thrust faulting associated with the mw = 6.8 Zemmouri (Algeria) earthquake of 21 may, 2003. Geophys Res Lett 31(19)Google Scholar
  33. Saadallah A (1981) Le massif cristallophyllien d’El Djazair (Algérie), évolution d’un charriage à vergence Nord dans les Interniez des Maghrébides. Thèse 3 éme Cycle. I.S.T-USTHB. AlgérieGoogle Scholar
  34. Saadallah K (1984) Tectonique globale et active en Algérie alpine septentrionale. Conférence Internationale sur la microzonation sismique. Chlef. 10–12/11/1984Google Scholar
  35. Sandmeier K. J (2008) ReflexW (version 5.0) program for processing and interpretation of reflection and transmission data. Karlsruhe, Germany, Sandmeier softwareGoogle Scholar
  36. Sass O, Bell R, Glade T (2008) Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 93(1–2):89–103CrossRefGoogle Scholar
  37. Sebaï A, Bernard P (2008) Contribution à la connaissance de la sismicité d’Alger et de ses alentours au XVIII siècle, extraite des archives françaises. C R Geosci 340:495–512.  https://doi.org/10.1016/j.crte.2008.05.001 CrossRefGoogle Scholar
  38. Sol Expert International (S.E.I.) (1978) Mission 1, Bilan des phénomènes depuis 1973Google Scholar
  39. Sol Expert International (S.E.I.) (1981) Rapport Final, Written by Evers G., P fister PGoogle Scholar
  40. Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the complex spectrum: the S transform. IEEE Trans Signal Process 44:998–1001.  https://doi.org/10.1109/78.492555 CrossRefGoogle Scholar
  41. Tzanis A (2010) matGPR Release 2: A freeware MATLAB® package for the analysis & interpretation of common and single offset GPR data. FastTimes 15(1):17–43Google Scholar
  42. Tzanis A (2016) MATGPR Release 3.1, Manual and Technical Reference, Department of Geophysics, University of Athens Panepistimiopoli, Zografou 15784, Greece, atzanis@geol.uoa.grGoogle Scholar
  43. Walstra J, Dixon N, Chandler J-H (2007) Historical aerial photographs for landslide assessment: two case histories. Q J Eng Geol Hydrogeol 40:315–332CrossRefGoogle Scholar
  44. Yelles-Chaouche A-K, Boudiaf A, Djellit H, Bracène R (2006) La tectonique active de la région nord algérienne. C R Géosci 338:126–139CrossRefGoogle Scholar
  45. Zajc M, Pogacnik Z, Gosar A (2014) Ground penetrating radar and structural geological mapping investigation of karst and tectonic features in flyschoid rocks as geological hazard for exploitation. Int J Rock Mech Min Sci 67:78–87CrossRefGoogle Scholar
  46. Zhou Q, Jiang Y-f, Wu G, Chen G-g (eds) (2014) Distribution of coseismic landslides in Lushan earthquake and discussion on related problems. Seismol Geol 36(2):344–357Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nassim Hallal
    • 1
    Email author
  • Abdelkrim Yelles Chaouche
    • 1
  • Lamine Hamai
    • 1
  • Atmane Lamali
    • 1
  • Laurent Dubois
    • 2
  • Yahia Mohammedi
    • 1
  • Mouloud Hamidatou
    • 1
  • Leila Djadia
    • 1
  • Abdeslam Abtout
    • 1
  1. 1.Centre de Recherche en Astronomie Astrophysique et Géophysique (CRAAG)BouzaréahAlgeria
  2. 2.Centre d’étude et d’expertise sur les risques, l’environnement, la mobilité et l’aménagementLyonFrance

Personalised recommendations