Advertisement

Ground subsidence characteristics associated with urbanization in East China analyzed with a Sentinel-1A-based InSAR time series approach

  • Xixi Liu
  • Yunjia Wang
  • Shiyong Yan
  • Yaqin Shao
  • Hongyue Zhou
  • Yi Li
Original Paper

Abstract

Fengxian County in East China has experienced rapid urban development over the past decades, resulting in environmental problems associated with rapid urbanization, such as pollution, resource depletion, land subsidence, among others. In this study, we analyzed ground subsidence in Fengxian and Peixian counties associated with urbanization and mining activities by interferometric synthetic aperture radar (InSAR) time series technology, using 26 Sentinel-1A SAR images taken between July 2015 and March 2017. The results reveal that during the study period serious subsidence occurred in Fengxian town and the area of northern Peixian county. The maximum subsidence rate of the study area reached 75 mm/a, with an average subsidence rate of 15.9 mm/a. The subsidence rate was higher in the newly established districts east of Fengxian town than in the old town district. The most severe ground displacement in Peixian County occurred in the Zhang-shuang-lou mining area, while Peixian town itself was stable. These different spatial distributions of ground subsidence in the two county towns are highly correlated with their differing types of economic activities. We conclude that the relationship between ground subsidence and urbanization in these two county towns provides the basis for scientific decision-making regarding urban development.

Keywords

Ground subsidence InSAR time series County towns Urbanization 

Notes

Acknowledgements

The authors would like to thank the National Aeronautics and Space Administration (NASA) for providing the SRTM data, and the European Space Agency (ESA) for providing the Sentinel-1 SAR images free of charge. This research work was funded by the National Natural Science Foundation of China (No. 51574221) and the National Natural Science Foundation of Jiangsu Province (No. BK20150189).

References

  1. Bakr M (2015) Influence of groundwater management on land subsidence in deltas. Water Resour Manag 29:1541–1555.  https://doi.org/10.1007/s11269-014-0893-7 CrossRefGoogle Scholar
  2. Cao H, Liu J, Fu C, Zhang W, Wang G, Yang G, Luo L (2017) Urban expansion and its impact on the land use pattern in Xishuangbanna since the reform and opening up of China. Remote Sens 9:137.  https://doi.org/10.3390/rs9020137 CrossRefGoogle Scholar
  3. Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in shanghai. Géotechnique 54:143–147.  https://doi.org/10.1680/geot.54.2.143.36332 CrossRefGoogle Scholar
  4. Eldhuset K, Andersen PH, Hauge S, Isaksson E, Weydahl DJ (2003) ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard. Int J Remote Sens 24:1415–1437.  https://doi.org/10.1080/01431160210153039 CrossRefGoogle Scholar
  5. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J (1998) The shuttle radar topography mission. Rev Geophys 1:361.  https://doi.org/10.1029/2005RG000183
  6. Fattahi H, Agram P, Simons M (2016) A network-based enhanced spectral diversity approach for TOPS time-series analysis. IEEE Trans Geosci Remote Sens 55:777–786.  https://doi.org/10.1109/TGRS.2016.2614925 CrossRefGoogle Scholar
  7. Ferretti A, Monti-Guarnieri A, Prati C, Rocca F, Massonet D (2007) InSAR principles—guidelines for SAR interferometry processing and interpretation. ESA Publications, NoordwijkGoogle Scholar
  8. Grandin R (2015) Interferometric processing of SLC Sentinel-1 TOPS data. In: Fringe2015: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, 2015.  https://doi.org/10.5270/Fringe2015.pp116
  9. Holzer TL, Johnson AI (1985) Land subsidence caused by ground water withdrawal in urban areas. Geojournal 11:245–255.  https://doi.org/10.1007/BF00186338 CrossRefGoogle Scholar
  10. Hooper AJ (2006) Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation. PhD dissertation. Standford University, StandfordGoogle Scholar
  11. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:96–106.  https://doi.org/10.1029/2008GL034654 CrossRefGoogle Scholar
  12. Hooper A, Zebker HA (2007) Phase unwrapping in three dimensions with application to InSAR time series. J Opt Soc Am A Opt Image Sci Vis 24:2737–2747.  https://doi.org/10.1364/JOSAA.24.002737 CrossRefGoogle Scholar
  13. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:1–5.  https://doi.org/10.1029/2004GL021737 CrossRefGoogle Scholar
  14. Hu RL, Yue ZQ, Wang LC, Wang SJ (2004) Review on current status and challenging issues of land subsidence in China. Eng Geol 76:65–77.  https://doi.org/10.1016/j.enggeo.2004.06.006 CrossRefGoogle Scholar
  15. Hyde P, Dubayah R, Walker W, Blair JB, Hofton M, Hunsaker C (2006) Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sens Environ 102:63–73.  https://doi.org/10.1016/j.rse.2006.01.021 CrossRefGoogle Scholar
  16. Li Y (2011) The problems and analysis of China’s process of the urbanization since the reform and opening-up. In: Electric Technology and Civil Engineering (ICETCE), International Conference on IEEE 2011:1712–1723.  https://doi.org/10.1109/ICETCE.2011.5774456
  17. Lisle RJ (2006) Google earth: a new geological resource. Geol Today 22:29–32CrossRefGoogle Scholar
  18. Liu X, Wang Y, Yan S (2017) Interferometric SAR time series analysis for ground subsidence of the abandoned mining area in north Peixian using sentinel-1A TOPS data. J Indian Soc Remote Sensing:1–11.  https://doi.org/10.1007/s12524-017-0708-4 CrossRefGoogle Scholar
  19. Marschalko M, Yilmaz I, Kubečka K, Bouchal T, Bednárik M, Drusa M, Bendová M (2015) Utilization of ground subsidence caused by underground mining to produce a map of possible land-use areas for urban planning purposes. Arab J Geosci 8:579–588CrossRefGoogle Scholar
  20. Mittermayer J, D’Aria D, Monti Guarnieri A, Piantanida R, Prats P, Sauer S, Snoeij P (2009) Comparison of Sentinel-1 and TerraSAR-X TOPS Processor implementations based on simulated data. In: CEOS SAR Workshop on Calibration and Validation (CEOS SAR CalVal), 17–19 September, 2009, PasadenaGoogle Scholar
  21. Osmanoğlu B, Dixon TH, Wdowinski S, Cabral-Cano E, Jiang Y (2011) Mexico City subsidence observed with persistent scatterer InSAR. Int J Appl Earth Obs Geoinf 13:1–12.  https://doi.org/10.1016/j.jag.2010.05.009 CrossRefGoogle Scholar
  22. Pipia L, Aguasca A, Fabregas X, Mallorqui JJ (2007) Mining induced subsidence monitoring in urban areas with a ground-based SAR. In: Urban remote sensing joint event IEEE:1-5.  https://doi.org/10.1109/URS.2007.371881
  23. Pritchard ME, Simons M (2013) An InSAR-based survey of volcanic deformation in the Central Andes. Geochem Geophys Geosyst 5:259–259.  https://doi.org/10.1029/2003GC000610 CrossRefGoogle Scholar
  24. Ryder I, Parsons B, Wright TJ, Funning GJ (2010) Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling. Geophys J R Astron Soc 169:1009–1027.  https://doi.org/10.1111/j.1365-246X.2006.03312.x CrossRefGoogle Scholar
  25. Shen S, Xu Y (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48:1378–1392.  https://doi.org/10.1139/t11-049 CrossRefGoogle Scholar
  26. Shi X et al (2008) Regional land subsidence simulation in Su-xi-Chang area and Shanghai City, China. Eng Geol 100:27–42.  https://doi.org/10.1016/j.enggeo.2008.02.011 CrossRefGoogle Scholar
  27. Simons M, Fialko Y, Rivera L (2002) Coseismic deformation from the 1999 mw 7.1 Hector mine, California, earthquake as inferred from InSAR and GPS observations. Bull Seismol Soc Am 92:1390–1402.  https://doi.org/10.1785/0120000933 CrossRefGoogle Scholar
  28. Singh KD, González PJ, Tiampo KF (2012) Observations of Mount Sinabung, Indonesia volcanic eruption and ground deformation using StaMPS–A new technique of InSAR data processing. In: Int Conference on Geospatial Technologies and Applications, 1-2 February, 2012, IndiaGoogle Scholar
  29. Tang YQ, Cui ZD, Wang JX, Lu C, Yan XX (2008) Model test study of land subsidence caused by high-rise building group in Shanghai. Bull Eng Geol Environ 67:173–179.  https://doi.org/10.1007/s10064-008-0121-x CrossRefGoogle Scholar
  30. Tesauro M, Berardino P, Lanari R, Sansosti E, Fornaro G, Franceschetti G (2000) Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry. Geophys Res Lett 27:1961–1964.  https://doi.org/10.1029/2000GL008481 CrossRefGoogle Scholar
  31. Torres R, Snoeija P, Geudtnera D, Bibbya D, Davidsona M, Attemaa E, Potina P, Rommena B, Flourya N, Browna M, Travera IN, Deghayea P, Duesmanna B, Rosicha B, Mirandaa N, Brunob C, L'Abbateb M, Crocib R, Rostanc F (2012) GMES Sentinel-1 mission. Remote Sens Environ 120:9–24.  https://doi.org/10.1016/j.rse.2011.05.028 CrossRefGoogle Scholar
  32. Wang ZY, Zhang JZ (2010) Use of D-InSAR technique for monitoring ground subsidence in the Yanzhou coal mining area (China). Appl Mech Mater 34-35:756–760.  https://doi.org/10.4028/www.scientific.net/AMM.34-35.756 CrossRefGoogle Scholar
  33. Wegmuller U, Werner C, Stroozzi T, Wiesmann A, Frey O, Santoro M (2015) Sentinel-1 support in the GAMMA software. In: Fringe2015: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, 2015.  https://doi.org/10.5270/Fringe2015.pp70
  34. Xu YS, Yuan Y, Shen SL, Yin ZY, Wu HN, Ma L (2015) Investigation into subsidence hazards due to groundwater pumping from aquifer II in Changzhou, China. Nat Hazards 78:281–296.  https://doi.org/10.1007/s11069-015-1714-x CrossRefGoogle Scholar
  35. Xue YQ, Zhang Y, Ye SJ, Wu JC, Li QF (2005) Land subsidence in China. Environ Geol 48:713–720.  https://doi.org/10.1007/s00254-005-0010-6 CrossRefGoogle Scholar
  36. Yagüe-Martínez N, Prats-Iraola P, González FR, Brcic R, Shau R, Geudtner D, Eineder M, Bamler R (2016) Interferometric processing of Sentinel-1 TOPS data. IEEE Trans Geosci Remote Sens 54:2220–2234.  https://doi.org/10.1109/TGRS.2015.2497902 CrossRefGoogle Scholar
  37. Ye S, Xue Y, Wu J, Yan X, Yu J (2016) Progression and mitigation of land subsidence in China. Hydrogeol J 24:685–693.  https://doi.org/10.1007/s10040-015-1356-9 CrossRefGoogle Scholar
  38. Zhang M, Burbey TJ (2016) Inverse modelling using PS-InSAR data for improved land subsidence simulation in Las Vegas Valley, Nevada: inverse modeling using PS-InSAR data for land subsidence simulation. Hydrol Process.  https://doi.org/10.1002/hyp.10945 CrossRefGoogle Scholar
  39. Zhang Y, Gong H, Gu Z, Wang R, Li X, Zhao W (2014) Characterization of land subsidence induced by groundwater withdrawals in the plain of Beijing city, China. Hydrogeol J 22:397–409.  https://doi.org/10.1007/s10040-013-1069-x CrossRefGoogle Scholar
  40. Zhu L, Gong H, Li X, Wang R, Chen B, Dai Z, Teatini P (2015) Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng Geol 193:243–255.  https://doi.org/10.1016/j.enggeo.2015.04.020 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xixi Liu
    • 1
    • 2
  • Yunjia Wang
    • 2
  • Shiyong Yan
    • 2
  • Yaqin Shao
    • 2
    • 3
  • Hongyue Zhou
    • 2
  • Yi Li
    • 2
  1. 1.College of Information Science and EngineeringHenan University of TechnologyZhengzhouPeople’s Republic of China
  2. 2.School of Environment Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  3. 3.School of Mines and CoalsInner Mongolia University of Science and TechnologyBaotouPeople’s Republic of China

Personalised recommendations