Advertisement

Derivation of space-resolved normal joint spacing and in situ block size distribution data from terrestrial LIDAR point clouds in a rugged Alpine relief (Kühtai, Austria)

  • Volker Wichmann
  • Thomas Strauhal
  • Christine Fey
  • Sebastian Perzlmaier
Original Paper
  • 69 Downloads

Abstract

Terrestrial laserscan (TLS) surveys allow the geological investigation of rock slopes, which cannot be measured by direct surveys because of inaccessibility, high hazard potential or excessive effort. The normal joint spacing and the in situ block size distribution are relevant properties for rock mass characterisation but are commonly evaluated statistically or at small regions only. This study presents the jointing characterisation of an Alpine rock slope by both scanline data and a new, automated analysis of point cloud data. The slope, located in the Längental (Austria), is characterised by a rugged Alpine relief and granodioritic gneisses fractured by non-persistent joints. The scanline data and the TLS surveys were used to investigate joint set orientations, normal joint spacings and in situ block sizes. Area-wide maps of rock slope properties were prepared from the results of the point cloud analysis. The general results derived from the point clouds are in good agreement with the scanline data. The space-resolved maps show larger block sizes in some of the higher ranging sub-regions and small block sizes in tectonically formed gullies, as well as various local variations. These visualisations are much more beneficial for most rock mechanical questions than common statistical data evaluation approaches using pre-defined sub-regions, which are treated as homogenous areas and thus are missing space-resolved information.

Keywords

Terrestrial laserscan Point cloud analysis Joint characterisation Normal joint spacing In situ block size distribution Austria 

Notes

Acknowledgements

The authors thank TIWAG-Tiroler Wasserkraft AG for providing the Riegl TLS scanner and archive data. We thank Heiner Rett for support during the TLS field surveys, and Christian Zangerl and Christoph Prager for fruitful discussions. This study was part of the alpS research project AdaptInfra, which was supported and funded by TIWAG-Tiroler Wasserkraft AG, ILF Consulting Engineers Austria GmbH and the Austrian Research Promotion Agency (COMET program). The alpS-K1-Centre is supported by Federal Ministries BMVIT and BMWFW and by the states of Tyrol and Vorarlberg within the framework of the Competence Centers for Excellent Technologies (COMET). COMET is processed through FFG (Österreichische Forschungsförderungsgesellschaft).

References

  1. Barton N (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–239CrossRefGoogle Scholar
  2. Bieniawski ZT (1976) Rock mass classification in rock engineering. In: Bieniawski ZT (ed) Exploration for rock engineering, proceedings of the symposium, vol 1. Balkema, Rotterdam, pp 97–106Google Scholar
  3. Cacciari PP, Futai MM (2016) Mapping and characterization of rock discontinuities in a tunnel using 3D terrestrial laser scanning. Bull Eng Geol Environ 75(1):223–237.  https://doi.org/10.1007/s10064-015-0748-3 CrossRefGoogle Scholar
  4. Cai M, Kaiser PK, Uno H, Tasaka Y, Minami M (2004) Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. Int J Rock Mech Min Sci 41:3–19.  https://doi.org/10.1016/S1365-1609(03)00025-X CrossRefGoogle Scholar
  5. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007.  https://doi.org/10.5194/gmd-8-1991-2015 CrossRefGoogle Scholar
  6. Fanti R, Gigli G, Lombardi L, Tapete D, Canuti P (2013) Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides 10(4):409–420.  https://doi.org/10.1007/s10346-012-0329-5 CrossRefGoogle Scholar
  7. Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:631–665.  https://doi.org/10.1007/s00603-008-0010-4 CrossRefGoogle Scholar
  8. Ferrero AM, Migliazza M, Roncella R, Segalini A (2011) Rock cliffs hazard analysis based on remote geostructural surveys: the Campione del Garda case study (Lake Garda, northern Italy). Geomorphology 125(4):457–471.  https://doi.org/10.1016/j.geomorph.2010.10.009 CrossRefGoogle Scholar
  9. Fey C, Wichmann V (2017) Long-range terrestrial laser scanning for geomorphological change detection in alpine terrain - handling uncertainties. Earth Surf Process Landf 42(5):789–802.  https://doi.org/10.1002/esp.4022 CrossRefGoogle Scholar
  10. Fisher JE, Shakoor A, Watts CF (2014) Comparing discontinuity orientation data collected by terrestrial LiDAR and transit compass methods. Eng Geol 181:78–92.  https://doi.org/10.1016/j.enggeo.2014.08.014 CrossRefGoogle Scholar
  11. Gallant MJ, Marshall JA (2016) Automated rapid mapping of joint orientations with mobile LiDAR. Int J Rock Mech Min Sci 90:1–14.  https://doi.org/10.1016/j.ijrmms.2016.09.014 CrossRefGoogle Scholar
  12. Gigli G, Casagli N (2011) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48(2):187–198.  https://doi.org/10.1016/j.ijrmms.2010.11.009 CrossRefGoogle Scholar
  13. Gigli G, Morelli S, Fornera S, Casagli N (2014) Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides 11(1):1–14.  https://doi.org/10.1007/s10346-012-0374-0 CrossRefGoogle Scholar
  14. Golder Associates (2015) FracMan 7, http://www.fracman.com
  15. Günther A, Thiel C (2009) Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (Rügen Island, Germany). Nat Hazards Earth Syst Sci 9:687–698.  https://doi.org/10.5194/nhess-9-687-2009 CrossRefGoogle Scholar
  16. Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Balkema, RotterdamGoogle Scholar
  17. Hofrichter J, Winkler G (2006) Statistical analysis for the hydrogeological evaluation of the fracture networks in hard rocks. Environ Geol 49:821–827.  https://doi.org/10.1007/s00254-006-0177-5 CrossRefGoogle Scholar
  18. Jaboyedoff M, Metzger R, Oppikofer T, Couture R, Derron M-H, Locat J, Turmel D (2007) New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points: COLTOP-3D software. In: Eberhardt E, Stead D, Morrison T (eds) Rock mechanics: meeting society’s challenges and demands, vol 1. Taylor & Francis, London, pp 61–68.  https://doi.org/10.1201/NOE0415444019-c8 CrossRefGoogle Scholar
  19. Laserdata (2017) LIS Pro 3D software package, https://www.laserdata.at/software.html
  20. Lato MJ, Diederichs MS, Hutchinson DJ, Harrap R (2012) Evaluating the roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols. Nat Hazards 60(3):831–864.  https://doi.org/10.1007/s11069-011-9872-y CrossRefGoogle Scholar
  21. Palmstroem A (1996) Characterizing rock masses by the RMi for use in practical rock engineering, part 1: the development of the rock mass index (RMi). Tunn Undergr Space Technol 11(2):175–188.  https://doi.org/10.1016/0886-7798(96)00015-6 CrossRefGoogle Scholar
  22. Priest SD (1993) Discontinuity analysis for rock engineering. Chapman & Hall, London.  https://doi.org/10.1007/978-94-011-1498-1 CrossRefGoogle Scholar
  23. Riegl (2013) Operating and processing software RiScan Pro, http://www.riegl.com/products/software-packages/riscan-pro/
  24. Riquelme AJ, Abellan A, Tomas R, Jaboyedoff M (2014) A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput Geosci 68:38–52.  https://doi.org/10.1016/j.cageo.2014.03.014 CrossRefGoogle Scholar
  25. Riquelme AJ, Abellan A, Tomas R (2015) Discontinuity spacing analysis in rock masses using 3D point clouds. Eng Geol 195:185–195.  https://doi.org/10.1016/j.enggeo.2015.06.009 CrossRefGoogle Scholar
  26. Rocscience (2016) Rocscience software products – DIPS 7.0, http://www.rocscience.com
  27. Rosser N, Lim M, Petley D, Dunning S, Allison R (2007) Patterns of precursory rockfall prior to slope failure. J Geophys Res 112:1–14.  https://doi.org/10.1029/2006JF000642 CrossRefGoogle Scholar
  28. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117.  https://doi.org/10.1007/s00015-004-1113-x CrossRefGoogle Scholar
  29. Slob S (2010) Automated rock mass characterisation using 3-D terrestrial laser scanning. Dissertation, Delft University of TechnologyGoogle Scholar
  30. Slob S, van Knapen B, Hack R, Turner K, Kemeny J (2005) Method for automated discontinuity analysis of rock slopes with three-dimensional laser scanning. Transp Res Rec J Transp Res Board 1913(1):187–194.  https://doi.org/10.3141/1913-18 CrossRefGoogle Scholar
  31. Vöge M, Lato MJ, Diederichs MS (2013) Automated rockmass discontinuity mapping from 3-dimensional surface data. Eng Geol 164:155–162.  https://doi.org/10.1016/j.enggeo.2013.07.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.alpS – Centre for Climate Change AdaptationInnsbruckAustria
  2. 2.LASERDATA GmbHInnsbruckAustria
  3. 3.TIWAG-Tiroler Wasserkraft AGInnsbruckAustria

Personalised recommendations